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Abstract 
Accurate genomic evaluations are less costly if many animals are genotyped at less than the highest density and 
their missing genotypes filled using haplotypes. Mixed density files for 45,870 animals were examined by 
reducing half of young animal or all animal genotypes from the observed 43,385 markers to a subset of 3,209 
markers. For young Holsteins genotyped with 3,209 markers, the gain in net merit reliability was 79% of the 
gain from genotyping 43,385 markers. When half of the reference population had 3,209 markers, gain was 90% 
for young animals with 43,385 markers and 73% for young animals with 3,209 markers. Gain was 66% when 
all animals had only 3,209 markers. Simulated gain in reliability from increasing the number of markers to 
500,000 was only 1.4%, but more than half of that gain could result from genotyping just 1,586 bulls at higher 
density. Reliability improved when more reference animals were genotyped at higher density. Individual 
reliabilities can be adjusted to account for number of markers and success of imputation. 
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Introduction 
 

Genomic selection will be more efficient and 
affordable when breeders evaluate animals with 
different genetic marker sets available for different 
prices. Instead of genotyping all animals at the 
highest marker density, genotypes of different 
densities can be combined. The missing genotypes 
in the lower density sets can be filled (imputed) 
from genotypes or haplotypes of relatives or from 
matching allele patterns in the general population. 

Lower density panels could be selected to 
include only the most significant markers from a 
larger set to maximize reliability for a particular 
trait, but reliability for other traits may be low if 
correlation to the selected trait is low. A second 
option is to include equally spaced, highly 
polymorphic markers and to impute the missing 
genotypes, giving increased reliability for all traits. 
Previous studies such as Weigel et al. (2009) have 
compared differing marker densities, but only a few 
recent studies have tested genomic evaluation using 
mixed density and imputation (Druet et al., 2010; 
Habier et al., 2009; Weigel et al., 2010a). 

Both lower and higher density marker panels 
have been designed for use in genomic evaluation. 
The imputation methods reported here have been 
tested on mixtures of simulated markers with a 
range of densities from 500 to 500,000. The current 
report investigates actual 346 and 3,209 marker 
subsets of the 43,385 marker genotypes in the 
North American database and also compares 
mixtures of 50,000 and 500,000 simulated markers 
for this same population.  

 

Methods 
 

Actual genotypes of 40,351 Holsteins, 4,064 
Jerseys, and 1,455 Brown Swiss were used in 
comparing the full set of 43,385 markers (Wiggans 
et al, 2010) to a subset of 3,209 evenly spaced 
markers selected for inclusion on an Illumina chip. 
The Holstein population included 24,306 males and 
16,045 females, with 96% of the sires but only 31% 
of the dams genotyped. An earlier population of 
25,365 Holsteins was used to test a subset of 346 
selected markers with largest effects for net merit. 

Two mixed density sets were constructed by 1) 
reducing half of all animals to low density (3,209 
markers) or by 2) reducing half of only the young 
animals to 3,209 markers. Animals were assigned 
low density if the last digit of the identification 
number was even. A third analysis 3) used 
regressions on only the 3,209 markers for all 
animals to determine the loss from only using low 
density as compared to mixed density.  

Haplotypes were formed and genotypes imputed 
using Fortran program findhap.f90. The program 
begins by dividing each chromosome into segments 
of about 250 markers and listing all haplotypes by 
matching each genotype to the list of haplotypes. 
This population haplotyping step is analogous to 
the fastPhase and IMPUTE methods tested by 
Weigel et al. (2010a) on the Jersey data file. The 
program ends with pedigree haplotyping steps to 
detect crossovers, fix noninheritance, and impute 
nongenotyped ancestors. Imputed genotypes are 
used in the evaluation only if at least 90% of the 
ancestor's haplotypes can be determined from 
progeny. 
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Genomic evaluations were computed with the 
iterative, nonlinear Fortran program densemap.f90 
of VanRaden (2008). The model included a 
polygenic effect assigned 10% of genetic variance 
with 43,385 markers or 30% with 3,209 markers, 
and the remaining variance was modeled by the 
marker effects. For Holsteins, computing times 
using one processor were 2.2 hours to complete the 
haplotyping and 6.5 hours to complete 130 
iterations for 5 traits evaluated together. Memory 
requirements were 0.7 gigabytes for haplotyping 
and 1.3 gigabytes to solve the genomic equations. 

Only the most recent data from April 2010 was 
used in this study instead of using truncated data. In 
most previous studies, differing models or data 
subsets were compared by predicting recent data 
from historical data. Squared correlations among 
subset GEBV, full set GEBV, and parent average 
(PA) were used to obtain the gain in reliability 
above PA reliability from using a marker subset as 
a percentage of the gain from the full set:  

% of gain = 100 [corr2(subset, full set) - 
corr2(PA, full set)] / [1 - corr2(PA, full set)]  

Simulated 500,000 marker genotypes were used 
to estimate the numbers of animals needed for 
higher density genomic selection. Three simulated 
data sets included 1,586, 3,726, or 7,398 bulls 
genotyped with 500,000 markers and the remainder 
of the 33,414 Holsteins genotyped with 50,000 
markers. Using one processor, haplotyping required 
3.1 hours and 2.8 gigabytes of memory, and 
evaluation of 5 traits (replicates) required 150 
iterations, 2.5 days, and 7.9 gigabytes of memory. 

Maximum genomic reliability that can be 
obtained in practice (RELmax) is limited by the 
maximum marker density and by the size of the 
reference population. As the reference population 
becomes infinitely large, reliability should 
approach 1 minus the fraction of polygenic 
variance (poly). Total daughter equivalents (DEmax) 
from the reference population can be obtained by 
summing traditional reliabilities (RELtrad) minus the 
reliabilities of parent average (RELpa), multiplying 
by the ratio of error to sire variance (k), and 
dividing by the equivalent reference size (n) needed 
to achieve 50% genomic REL (VanRaden and 
Sullivan, 2010):  

DEmax = ∑(RELtrad - RELpa) k / n.  
Conversion of DEmax to genomic REL should 

account for genotyped SNP not perfectly tracking 
all QTL in the genome because full sequences are 
not available. Multiplication by 1 - poly prevents 
reliability from reaching 100%. If all reference 
animals are genotyped at the highest chip density, 
expected genomic REL for young animals without 
pedigree information can be calculated as:  

RELmax = (1 - poly) DEmax / (DEmax + k). 
Genomic reliabilities for individual animals can 

account for their traditional reliabilities, numbers of 
markers genotyped, quality of imputation, and 
relationship to the reference population. Each 
animal's traditional REL is converted to daughter 
equivalents (DEtrad), and these are added to DEmax 
adjusted for any additional error introduced by 
genotyping at lower SNP density. The reduced 
daughter equivalents from genomics (DEgen) can be 
calculated from the squared correlation between 
estimated and true genotypes averaged across loci 
(RELsnp) for each animal as: 

DEgen = k RELmax RELsnp / (1 - RELmax RELsnp) 
Animals less related to the reference population 

may have lower DEgen (Liu et al., 2010). The 
animal's total reliability RELtot is computed from 
the sum of the daughter equivalents as: 
 RELtot = (DEtrad + DEgen) / (DEtrad + DEgen + k) 
  
Results 
 

Numbers of non-genotyped dams that had at 
least 90% of haplotypes imputed from progeny 
were 2254 Holsteins, 184 Jerseys, and 68 Brown 
Swiss. Squared correlations of their genomic with 
traditional evaluations for net merit were 0.76 for 
Holsteins, 0.81 for Jerseys, and 0.91 for Brown 
Swiss. Larger correlations are expected with 
smaller reference populations. Squared correlations 
of genomic evaluations for imputed dams obtained 
when half of their progeny had 3,209 markers 
genotyped or when all progeny had 43,385 markers 
were 0.87 for Holsteins, 0.94 for Jerseys, and 0.93 
for Brown Swiss. Thus, inclusion of some progeny 
with only 3,209 markers resulted in less accurate 
imputation of their dams and less gain in reliability. 

When reference animals all had 43,385 SNPs, 
squared correlations were 0.90 or higher between 
young animal GEBV computed using full data or 
imputed using 3,209 SNPs (Table 1). Gains in 
reliability from 3,209 SNPs were 79-88% of the 
gain from 43,385 SNP if haplotyping was used, but 
were only 61-63% if regressions on the 3,209 SNPs 
were used in analysis 3. 

When half of the reference animals had only 
3,209 SNP genotyped, gains in reliability for net 
merit for progeny genotyped with 43,385 SNP were 
90% of gains from the full data for Holstein, 82% 
for Jersey, and 84% for Brown Swiss (Table 2). 
Respective gains in reliability for young animals 
genotyped with 3,209 SNP decreased to 73%, 56%, 
and 72% of the full set gains when half of the 
reference animals also had only 3,209 SNP 
genotyped. Jersey and Brown Swiss PA results 
differed in the two subsets due to small numbers. 
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Table 1. Squared correlations and percentage of 
reliability gain using 3,209 to impute 43,385 
markers for Holstein young animals. 
 Squared correlations 3K gain  
Trait 3K, 43K PA, 43K % of 43K 
Net merit 0.90 0.52 79 
Milk 0.92 0.52 83 
Fat 0.92 0.52 83 
Protein 0.92 0.56 82 
Fat % 0.92 0.34 88 
Protein % 0.92 0.47 85 
Productive life 0.93 0.50 87 
Somatic cells 0.91 0.42 85 
Pregnancy rate 0.94 0.54 86 
 
Table 2. Percentage of net merit reliability gain 
for young animals when half of all animals had 
3,209 or 43,385 markers (part data).  
Markers for Squared correlations % of   
young animals Part, Full PA, Full Full gain 
Holstein    

43,385 0.95 0.51 90 
3,209 0.87 0.51 73 

Jersey    
43,385 0.91 0.51 82 

3,209 0.81 0.57 56 
Brown Swiss    

43,385 0.94 0.63 84 
3,209 0.93 0.73 72 

 
The lower density panel of 346 markers selected 

for net merit gave gains that were smaller and more 
variable across traits (14-55%) as compared to the 
43,385 gain when evaluated using 346 regressions 
(Table 3).   

 
Table 3. Squared correlations and percentage of 
reliability gain with 346 selected vs. 43,385 
markers. 
 Squared correlations  
Trait 346, 43K PA, 43K % of gain 
Net merit 0.73 0.60 33 
Milk 0.62 0.51 22 
Fat 0.69 0.52 35 
Protein 0.63 0.54 20 
Fat % 0.69 0.31 55 
Protein % 0.60 0.46 26 
Productive life 0.65 0.55 22 
Somatic cells 0.50 0.42 14 
Pregnancy rate 0.63 0.56 16 
 

Gains increased to about 80% when evaluated 
using methods of Habier et al. (2009) for animals 
with 346 SNP and both parents genotyped for 
43,385 SNP, but remained small if parents were not 

genotyped. Gains were 90% for progeny genotyped 
with 3,209 SNP and both parents with 43,385 SNP. 
Gains were above 70% if parents were not 
genotyped. A primary advantage of using more 
markers in young animal selection is more precise 
evaluation of those without genotyped parents. 
Results in Table 1 are similar to those obtained by 
Weigel et al. (2010b) from Jersey genotypes, but 
results in Table 2 are more favorable, probably 
because of the use of pedigree information in the 
haplotyping algorithm. 

With 500,000 simulated markers for all 
genotyped animals, reliability for young bulls 
averaged 84.0% as compared with 82.6% using a 
50,000-marker subset (Table 4). Reliabilities for 
three mixed densities were intermediate, ranging 
from 83.4% to 83.7%. Percentage of missing alleles 
that could not be determined from haplotypes 
ranged from 5.3% with 1586 bulls to 1.5% with 
7,398 bulls. Recent refinements to the haplotyping 
algorithm have improved the call rates and 
reliabilities compared to earlier tests on the same 
data. 

Reliabilities expected with larger reference 
populations and larger marker densities are in 
Figure 1. Expectations in the graph are for net merit 
using a single density, but combined densities 
instead allow genotypes to be imputed, bringing 
reliabilities much closer to those possible when all 
animals are genotyped at highest density. The graph 
reflects the 1.4% increase in reliability observed at 
highest density rather than the 10% polygenic 
variance assumed in U.S. evaluations. Methods to 
estimate proportions of correctly called genotypes 
or squared correlations of estimated and true 
genotypes are needed for individual animals so that 
RELsnp can be included in the published REL.  

 
Figure 1. Expected reliabilities by reference 
population size using only 3K, 50K, or 500K 
SNP. 
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Conclusions 
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Mixed marker sets can give good reliabilities for 
all animals at less cost. Animals genotyped at lower 
density can have their missing genotypes imputed 
from higher density haplotypes of relatives or from 
other members of the population. Average gains in 
reliability with 3,209 SNP for young animals were 
79-88% of those with 43,385 SNP if imputing was 
used but only 61-63% without imputation. A 
smaller set of 346 markers selected for net merit 
provided 80% of the gain in reliability if both 
parents were genotyped at high density, but gain 
was much lower if parents were not genotyped and 
only 33% if regression instead of imputation was 
used. 

The reference population can also include 
animals with lower density genotypes after 
imputing these to the higher density. When half of 
the reference population was genotyped with 3,209 
SNP, gains in reliability were 90% of those from 
the full Holstein data set for progeny genotyped 
with 43,385 SNP and 73% for progeny genotyped 
with 3,209 SNP.  

When higher density panels are introduced, 
mixed density datasets may be the only option 
because breeders will not regenotype all reference 
animals. With 500,000 simulated markers, 
reliability increased by 1.4%. Most of that gain 
could be achieved using only a few thousand 
animals genotyped at higher density, and only 2-6% 
of the missing genotypes could not be determined 
for the animals with 50,000 markers observed.  

Differing marker sets for large populations can 
be combined with just a few hours of computation. 
Further improvements to imputation algorithms 
may allow smaller fractions of animals to be 
genotyped at highest density. For animals 
genotyped at lower density, reliabilities are lower if 
reliabilities of imputed genotypes are less than 1. 
More precise estimates of reliability will allow 
breeders to properly balance benefits vs. costs of 
using different marker sets. 
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Table 4. Missing genotypes before and after haplotyping and reliabilities by marker density and by 
number of animals genotyped with 500,000 markers (n) 
 Single density: Mixed density: Single  density: 
Genotype missing rates 50,000; 50,000 and 500,000 500,000; 
and genomic reliability n = 0 n = 1,586 n = 3,726 n = 7,398 n = 33,414 
Missing before (%) 1 88 80 70 1 
Missing after (%) 0.05 5.3 2.3 1.5 0.05 
Genomic reliability (%) 82.6 83.4 83.6 83.7 84.0 
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