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ABSTRACT Related individuals share potentially long chromosome segments that trace to a common ancestor. We describe a phasing
algorithm (ChromoPhase) that utilizes this characteristic of finite populations to phase large sections of a chromosome. In addition to
phasing, our method imputes missing genotypes in individuals genotyped at lower marker density when more densely genotyped
relatives are available. ChromoPhase uses a pedigree to collect an individual’s (the proband) surrogate parents and offspring and uses
genotypic similarity to identify its genomic surrogates. The algorithm then cycles through the relatives and genomic surrogates one at
a time to find shared chromosome segments. Once a segment has been identified, any missing information in the proband is filled in
with information from the relative. We tested ChromoPhase in a simulated population consisting of 400 individuals at a marker density
of 1500/M, which is approximately equivalent to a 50K bovine single nucleotide polymorphism chip. In simulated data, 99.9% loci
were correctly phased and, when imputing from 100 to 1500 markers, more than 87% of missing genotypes were correctly imputed.
Performance increased when the number of generations available in the pedigree increased, but was reduced when the sparse
genotype contained fewer loci. However, in simulated data, ChromoPhase correctly imputed at least 12% more genotypes than
fastPHASE, depending on sparse marker density. We also tested the algorithm in a real Holstein cattle data set to impute 50K
genotypes in animals with a sparse 3K genotype. In these data 92% of genotypes were correctly imputed in animals with a genotyped
sire. We evaluated the accuracy of genomic predictions with the dense, sparse, and imputed simulated data sets and show that the
reduction in genomic evaluation accuracy is modest even with imperfectly imputed genotype data. Our results demonstrate that
imputation of missing genotypes, and potentially full genome sequence, using long-range phasing is feasible.

SINGLE nucleotide polymorphism (SNP) arrays from
sparse to high density are now available in many species.

The genotypes resulting from high-throughput methods are
unphased and, therefore, the paternal or maternal source of
each allele is unknown. Knowledge of parental origin or
haplotype information can be useful in the analysis of com-
plex traits, such as quantitative trait loci (QTL) detection
(e.g., Meuwissen and Goddard 2000), genomic selection
(e.g., Meuwissen et al. 2001; Calus et al. 2008; Villumsen

and Janss 2009), and detection of imprinting (e.g., Reik and
Walter 2001; Wood and Oakey 2006).

Many methods for resolving haplotypes have been pro-
posed and they fall into two broad categories: those that use
known relationships between individuals to perform a link-
age analysis (e.g., Elston and Stewart 1971; Lander and
Green 1987; Weeks et al. 1995; Windig and Meuwissen
2004) and those that rely on linkage disequilibrium among
the SNP in a population without known relationships (e.g.,
Clark 1990; Scheet and Stephens 2006; Tier 2006; Browning
and Browning 2009).

More recently, another feature of finite population ge-
nomics together with the availability of denser marker maps
have fostered new phasing approaches, as demonstrated by
Kong et al. (2008). Population characteristics such as geo-
graphical proximity can result in a high probability that
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individuals within a given population share a common an-
cestor not many generations ago. Similarly, in commercial
animal populations, selective breeding has reduced effective
population sizes by limiting the number of parents, again
causing individuals to share one or more common ancestors
in the past few generations. If individuals share a common
ancestor n generations ago, they are likely to have shared
chromosome segments of average length approximately
1/n M. Provided that n is not too large and with dense
genotyping of markers, these segments will contain many
markers and so it should be possible to recognize them and
distinguish them from short segments that are identical-by-
state (IBS) but do not trace to the common ancestor, with-
out complex likelihood calculations. This leads to a phasing
approach based on the key observation of Kong et al.
(2008) that if animals have nonconflicting homozygote
genotypes over a long string of consecutive loci, they have
at least one long haplotype in common. The requirement
of a long string of loci leads to a high probability that the
common long haplotype has originated in a common
ancestor.

Kong et al. (2008) called their method long-range phas-
ing, but the principle of comparing long stretches of chro-
mosomes between individuals to identify common segments
can also be used to impute and phase missing genotypes or
even to impute genotypes on individuals that have not been
genotyped at all. One particularly useful application is to
impute dense genotypes on individuals with sparse geno-
types using dense genotype information on their relatives.
Then, for example, genomic predictions for selection in live-
stock or crop species could be made on the imputed geno-
types, at the cost of genotyping the low-density markers. In
the extreme, full genome sequences could be imputed for
individuals that have been genotyped at moderate density,
provided they had enough relatives that had been fully se-
quenced (Goddard 2008).

Here we describe a computationally efficient algorithm
(ChromoPhase) that can phase whole chromosomes and
simultaneously impute missing genotypes if a haplotype has
been observed in the densely genotyped population. We use
a similar approach to that of Kong et al. (2008) and its
extension (Hickey et al. 2011), but whereas their focus is
on genotypes, we use haplotypes more explicitly. We also
use the pedigree to identify whether a relative is likely to
share a part of an individual’s paternal or maternal chromo-
some in addition to animals that are genomically similar,
which we call genomic surrogates. In addition, while Kong
et al. (2008) requires operational extensions to impute miss-
ing genotype information, our algorithm already addresses
the objective of long-range phasing to both phase and im-
pute loci simultaneously.

Methods

ChromoPhase has the objective of inferring paternal and
maternal gametes for a set of individuals on the basis of

a subset (possibly a complete subset) of all individuals with
dense genotypes. It relies upon the same principle as Kong
et al. (2008) in that it makes use of the potentially long
chromosome segments that related animals share. These
segments are particularly long when individuals are closely
related, as during meiosis the expected number of cross-
overs is one per Morgan of chromosome. Therefore, with
dense marker genotypes, the phase can be established by
comparing an individual to close relatives. An edited
pseudo-code of the algorithm is provided in Supporting In-
formation, File S1 and File S2.

We assumed biallelic loci with a reference allele coded
0 and an alternative allele coded 2. Genotypes were coded
0, 1, and 2, corresponding to 00, 02, and 22, respectively.
Missing alleles and genotypes are assigned 5. At the start of
ChromoPhase, all alleles on the paternal and maternal
gametes for all individuals are set to 5. We assume that
the individuals in the data can be divided into two groups,
set D containing all the individuals with dense genotyping,
and set S containing all the individuals that are sparsely
genotyped. Our dense simulated data had 15 SNP/cM but,
in general, “dense” can be defined as being sufficient for the
risk of double crossovers between adjacent loci to be negli-
gible. The complete algorithm has different stages and an
overview of the progression through the stages is shown in
Figure 1. In stage 1, potential sources of shared chromosome
segments are identified using pedigree and genotypic simi-
larity. In stage 2 alleles are assigned using two different
approaches: 2A employs rule-based allele assignment based
upon genotypes of parents, immediate offspring, and mates
and in 2B assignments are based upon phasing using un-
broken strings of matching alleles on their respective chro-
mosomes. Stage 2 is iterated (A, B, A . . . B) and initially
involves only individuals in set D. Once the predefined max-
imum phasing iteration for set D is reached, stage 3 is car-
ried out involving a further predefined number of iterations
of 2A and 2B for all individuals in set S. The imputed pater-
nal and maternal gametes of the densely genotyped individ-
uals (i.e., set D) remain unchanged by the imputation of
individuals in S, and if only phasing of densely genotyped
individuals is required then stage 3 is unnecessary.

Stage 1: Information sources

Each individual in sets D and S is considered as a proband.
Molecular genotyping errors are checked at each locus by
identifying where the proband genotype is inconsistent with
the paternal (maternal) genotype; e.g., proband genotype is
0 and father’s genotype is 2. Inconsistent genotypes are set
to missing in the proband if it is the only progeny conflicting
with the parent. A parent’s genotype is set to missing if it
conflicts with most offspring. Three sets of densely geno-
typed relatives are then defined for each proband by tracing
through the full pedigree. Hence, completely ungenotyped
individuals are used to connect genotyped individuals. The
first set of relatives consists of all descendants of the pro-
band and these are collected starting with the youngest
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individual. The second set, starting with the oldest individ-
ual, is called surrogate fathers and consists of individuals
related to the proband through his or her father. If the father
is densely genotyped, then he is the only surrogate father,
because more distant relatives do not add further informa-
tion on the paternal side of the proband. In a proband with
an ungenotyped father, the set of surrogate fathers of the
proband consists of the father’s surrogate fathers and moth-
ers as well as their offspring. Analogous rules are applied
to define the surrogate mothers. Only relatives up to 3
degrees removed from the proband are used in the sets of
surrogates.

Stage 2A: Single locus, rule-based allele assignment

ChromoPhase applies rule-based allele assignment to the
paternal or maternal gamete if they can be unambiguously
resolved on the basis of an individual’s own known geno-
type, the parental alleles, and offspring alleles (e.g., Pong-
Wong et al. 2001; Baruch et al. 2006). In all invocations the
following rules are applied starting at the top of the pedigree
(i.e., the oldest individual) working through to the bottom of
the pedigree. If the proband genotype is homozygous, then
both its paternal and maternal alleles are equal to the ho-
mozygous allele. If the father’s genotype is homozygous
then the proband paternal allele is equal to the father’s
homozygous allele. If a proband genotype is missing and
only the proband’s paternal allele is known, then if an off-
spring has only one allele known and it is opposite to the
proband’s paternal allele, the proband’s maternal allele must
be the same as the offspring’s maternal allele.

Stage 2B: Phasing of densely genotyped individuals

At the start of each invocation of 2B, genomic surrogates are
identified for each proband, by comparing its genotypes
with those for individuals in set D. A genomic surrogate
must have nonconflicting homozygotes (for example, no
instance of 0 genotype in proband and 2 genotype in the

potential genomic surrogate) with the proband for at least
100 consecutive loci if applied to an individual in set D, but
400 consecutive loci if applied to an individual in set S. This
is necessary because a proband in set S may have a lot of
missing information and the stretch of matches must include
a sufficient number of sparsely genotyped loci to effectively
identify genomic surrogates. Missing genotypes are not
included in the 100 loci in set D, but are included in the
400 loci in set S. Genomic surrogates are chosen to limit the
population-based search for shared segments to individuals
that “have something to offer” to the proband, thereby re-
ducing the total number of comparisons. In all invocations
the following procedure is then applied, starting with the
oldest individual working through to the youngest. Each
proband is compared to each of its relatives, contained
within the sets of surrogate fathers and mothers as well as
offspring, to allocate alleles by identifying shared segments
for three iterations. In the last two phasing iterations, com-
parisons to relatives continue but now the proband is also
compared to its genomic surrogates to identify shared chro-
mosome segments and fill in missing alleles in the proband
if the allele can be found in a shared segment. It is possible
that even densely genotyped individuals may have some
missing genotypes and these are imputed in the course
of 2B.

Stage 3: Phasing and imputation of sparsely
genotyped individuals

In stage 3, the iterations of stage 2 are now applied to
individuals in S, where rule-based filling is applied (stage
2A) and the proband is compared to its relatives and
genomic surrogates for the remaining eight iterations (stage
2B).

We now describe the comparisons of probands with
relatives and genomic surrogates as well as the criteria used
to accept segments as being shared in stage 2B. These
routines are the same for phasing or imputation iterations,
except for some shared segment acceptance criteria, de-
tailed below. Probands are separated into two main groups,
those that have at least one genotyped parent (nonfound-
ers) and those that do not (founders). Founders may have
surrogate fathers or mothers if connected to genotyped
relatives through pedigree. In nonfounders, phasing and
imputation is simpler because rule-based methods can be
used (stage 2A). In founders, there is a need to identify
erroneous crossovers within shared segments with surro-
gates so that proband gametes can be flipped after the
crossover, if necessary, to minimize the number of crossovers
and, in turn, phase the proband.

Criteria for acceptance of shared chromosome segments

The longer the stretch of matching loci between two
individuals, the higher the probability that the segment
traces to a common ancestor (Kong et al. 2008). We re-
quired a minimum length of 100 consecutive matching loci
for all individuals to accept a segment as shared. In the last

Figure 1 Representation of the three stages and workflow in the long-
range (LR) phasing and imputation algorithm, where Dense and Sparse
refer to densely and sparsely genotyped individuals.
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phasing and imputation iteration we relaxed this to 50 loci
to allow the filling in of more alleles. These criteria for de-
fining the minimum length of a shared segment can be adap-
ted to suit a data set and will depend on the number of
markers per Morgan. Note that the minimum segment
length is different from the length of nonopposing homozy-
gotes required to select genomic surrogates. When selecting
genomic surrogates, the main concern is identifying a subset
of D large enough to provide enough power to phase or
impute, but small enough to reduce the number of redun-
dant comparisons and, in turn, reduce the computational
burden. In contrast, here the focus is on accepting specific
chromosome segments as shared, and we compare gametes
instead of genotypes. Also note that while there is a theoret-
ical basis for the length of a genome segment required to be
accepted as shared, the remainder of the algorithm’s thresh-
olds and parameters have been chosen heuristically.

A segment starts when the alleles match and ends when
the alleles do not match anymore, as demonstrated in Figure
2. Missing genotypes or alleles do not end a segment, al-
though the proportion of missing alleles is tracked. When
there is a moderate amount of missing information, we may
be reasonably confident that the segment is shared if it is
long, but it is difficult to define the ends. Hence, it seems
useful to still make use of these segments but penalize their
length. Therefore, the algorithm removes a short stretch of
loci at the beginning and end of an identified segment,
termed “offset” in Figure 2. Testing has shown that having
an offset of 20 loci results in fewer errors while not impair-
ing phasing or imputation performance significantly. Fur-
thermore, in both phasing and imputation iterations the
offset is multiplied by four (chosen through empirical test-
ing) if the proportion of missing information exceeds half
the proportion of loci to be imputed. Short segments with
a lot of missing information will be discarded by this qua-
drupled offset. In the last phasing and imputation iteration
the offset is reduced to zero to fill in as many loci as possible.
When there is a large amount of missing information within
a segment, it will be accepted as shared if it meets the
following thresholds: (i) segments in nonfounders in set D
require ,20% missing loci, but no threshold is imposed for
set S and (ii) segments of founders in either set (D or S)
require less than 50% missing loci. In general, the sparser
the genotypes in set S, the more relaxed the missing allele
thresholds need to be. At the same time, relaxing the thresh-
olds will increase errors.

Comparisons to surrogates

Nonfounders are compared with their surrogates one
gamete at a time and Figure 3 shows the individuals steps
in this process. A proband’s paternal gamete is compared to
both of its surrogate father’s gametes consecutively (Figure
2). Similarly, a proband’s maternal gamete is compared to its
surrogate mother’s gametes and both proband gametes are
compared to both gametes of descendants, and then geno-
mic surrogates, one at a time. When a segment meets the

acceptance criteria, we collect allele information within the
segment as a count of allele 2 and as a count of the total
nonmissing alleles in all surrogates that share a segment
with the proband at a particular locus. Once comparisons
to surrogates have concluded for a particular proband, its
missing alleles are filled in on the basis of the collective
information from all surrogates. For any given locus, allele
2 is assigned to the proband gamete if the ratio of allele 2
counts over the total number of counts from all contributing
surrogates exceeds 0.7, assigned the 0 allele if less than 0.3,
and remains as 5 otherwise. The values of 0.7/0.3 can be
changed to suit a particular data set. Filling in on the basis of
majority information is expected to reduce errors as the in-
formation from all surrogates is used and not just the first
surrogate that matches. Nevertheless, in the last imputation
iteration a slightly modified version of this routine is run
where filling in is not based on majority information but is
filled in as soon as a segment is accepted as being potentially
shared.

Phasing of founders, which is shown in Figure 4, is diffi-
cult because rule-based methods based on genotyped
parents cannot be used to distinguish paternal or maternal
gametes. We define founders as individuals without geno-
typed parents. Our algorithm makes use of surrogate fathers
and mothers to partially distinguish the parental gametes of
the founder and then minimizes the number of crossovers
for phasing. Phasing and imputation of founders is accom-
plished by simultaneously comparing both their gametes to
one gamete of a surrogate. If the surrogate is a surrogate
father then they are compared to the proband’s paternal
gamete and to the maternal gamete if comparing to a surro-
gate mother. If the surrogate is a descendent, a descendent
of a surrogate father or mother, or a genomic surrogate, then
both proband gametes are compared to both surrogate
gametes consecutively. This comparison is shown in Figure
5 and the process is the same as that for nonfounders with
regard to finding shared segments. Strings of consecutive
and matching loci are sought, while keeping track of which
proband gamete matched the surrogate. Once the current
proband gamete ceases to match, either because of a switch

Figure 2 Comparison of proband with a genotyped parent (nonfounder)
to its surrogate father. Alleles on the proband’s paternal gamete (pai) are
compared to alleles on surrogate’s paternal gamete (pas) to identify
a shared chromosome segment, where ? is a possible match, + is a match,
and – is a nonmatch. The shared segment starts with the first match and
ends at the last match. Offset signifies the beginning and end of a match-
ing segment that is removed to guard against errors due to missing alleles
(5) before using the segment to fill in information.
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to matching with the other proband gamete or because nei-
ther proband gamete matches the surrogate, then the seg-
ment is subject to the acceptance criteria above and, if
accepted, missing alleles in the proband gamete are filled
with allele information from the surrogate gamete.

The main rationale behind comparing both gametes of
a proband founder simultaneously to the surrogate gamete

is that it allows the algorithm to collect information on what
appear to be crossovers. As an example, in Figure 5 the
surrogate gamete first matches the proband’s paternal gam-
ete; it then switches to matching the proband’s maternal
gamete. The locus where the matching switches from pater-
nal to maternal proband gamete either could be regarded as
a crossover in the surrogate’s gamete or the proband’s pa-
ternal and maternal gametes need to be flipped from that
locus onward (i.e., erroneous crossover in proband). All such
crossover points are stored during the assessment of each
proband. Before moving to the next proband, in loci where
the number of crossovers among surrogates outnumbers the
number of noncrossovers, the paternal and maternal game-
tes of the proband founder are flipped to remove the cross-
over. This process of minimizing crossovers is required to be
repeated as flipping one segment in the proband can reveal
new crossover points (Figure 4). In most cases, 5 “minimize
crossover” iterations are sufficient for the number of cross-
overs to converge, but we allow up to 20. While minimizing
crossovers for founders is repeated in each invocation of 2B,
only few adjustments are required in later invocations as
new information becomes available.

Simulated populations for testing

Populations in mutation drift equilibrium were simulated by
randomly mating individuals for 1000 generations with
crossover and mutation. Effective population size (Ne) was
200 and the number of male and female parents was equal
across generations. Previous work established that with this
Ne mutation, drift equilibrium was achieved with 1000 gen-
erations. One male and one female offspring were produced
per mating. Pedigree and genotype information was
retained for individuals in the last five generations. In

Figure 3 Representation of comparing nonfounders (individuals with at
least one genotyped parent) to their surrogates (densely genotyped
relative or genomic surrogate).

Figure 4 Representation of comparing founders (individ-
uals with no genotyped parents) to their surrogates
(densely genotyped relative or genomic surrogate), in-
cluding iterations in which the number of crossovers
are minimized in the proband.
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generations 997 through 999, 100 individuals were simu-
lated. Finally generation 1000 consisted of 200 individuals.
for a total of 500 individuals considered for phasing and
imputation. The number of individuals in the last generation
was achieved by doubling the number of offspring per
mating.

The genome simulated consisted of one chromosome
which measured 1 M. In generation zero, all individuals
were completely homozygous for the same allele in all
40,000 potential loci per Morgan and mutations were
applied at a rate of 2.5 · 1025/locus/meiosis in the follow-
ing generations. Mutations switched allele 0 to 2 and vice
versa. The number of mutations and crossovers per chromo-
some were sampled from a Poisson distribution. The mean
for the number of mutations corresponded to the product of
the number of loci per chromosome (both monomorphic and
polymorphic) and the mutation rate, and the mean for cross-
overs was one per Morgan. The sampled mutations and
crossovers were then randomly placed on the chromosome.
A more detailed account of the simulations can be found in
Daetwyler et al. (2010).

Approximately 1500 segregating biallelic loci exceeded
a minor allele frequency (MAF) of 0.02 at generation 1000,
which is equivalent to a marker density of 7.5Ne/M. Linkage
disequilibrium (LD, r2) statistics (Hill and Robertson 1968)
were 0.169, 0.066, 0.022, 0.008, and 0.005 for neighboring
SNP and SNP that were 1, 5, 20, or 50 cM apart, respectively
(SE were low). Allele frequency was found to follow a U-
shaped distribution as expected.

Testing in simulated data

The utility of ChromoPhase was evaluated in 25 replicates of
the data simulated as described above (genome summary =
1 chromosome, 1 M, 1500 loci, 100 QTL). Phasing utility

was checked in each replicate consisting of the last four,
three, and two generations in the data set. The pedigree
used by the program was restricted to the generations being
tested. Hence, no additional information was available on
ancestors beyond the animals in the genotyped data set.
Inferred alleles were compared to true alleles and this
yielded the following test parameters for both paternal and
maternal alleles, (i) percentage correct, (ii) percentage
missing, and (iii) percentage wrong. Statistics on phasing
were compiled only for nonfounders.

Imputation of missing genotypes was evaluated in 25
population replicates. Three sparse SNP densities were
simulated: 14, 34, and 100/M, which correspond to 420,
1020, and 3000 SNP for a 30-M genome. Markers in the
sparse subset were chosen to have higher than average MAF
and were evenly distributed across the genome. If an animal
was to be imputed, genotypes were set to missing in loci not
chosen as part of the sparse set at the beginning of the
algorithm. This was done in the last four, three, and two
generations to investigate how ChromoPhase copes with
varying depths of pedigree and resulted in nine scenarios
(i.e., three sparse densities and three pedigree depths). For
example, if there are four generations in the data set, three
parental generations had dense genotypes (1500 SNP/M)
and a proportion of animals in the last generation had sparse
genotypes (14–100 SNP/M) and need imputation. Test
parameters chosen for imputation of genotypes were, (i)
percentage correct, (ii) percentage missing, and (iii) per-
centage wrong when compared to true genotypes from
simulation.

Effect of imperfect imputation of genotypes was evalu-
ated by applying genomic evaluation to the data set. One
hundred QTL per Morgan were randomly sampled from the
segregating loci. This assured that the number of QTL was
larger than the number of independent chromosome seg-
ments (Daetwyler et al. 2010). Additive allele substitution
effects (b) were sampled from N(0,1). True breeding values
were calculated for each QTL as 2ð12mjÞbj (where mj is
the major allele frequency at locus j), 22mjbj, and
ðð12mjÞ2mjÞbj for the major and minor homozygote and
heterozygote genotype, respectively (Falconer and Mackay
1996). Phenotypes were generated by adding random envi-
ronmental deviations to genotypic values that were also
drawn from N(0,1) and scaled to achieve a heritability of
0.3. While the imputation data sets may have included more
than two generations (as noted in Table 5), only the last two
generations (300 individuals) were used to estimate geno-
mic breeding values to keep sample size constant. The ge-
nomic evaluation method fitted a realized relationship
matrix (G) based on marker information (NejatiJavaremi
et al. 1997; Hayes et al. 2009b). In each sparse marker
density (14, 34, 100 per Morgan), three different scenarios
were considered: (i) all 300 individuals were genotyped at
high density (Dense, 1500 SNP per Morgan), (ii) all individ-
uals were genotyped at sparse density (Sparse), (iii) indi-
viduals in the last generation were imputed to high density

Figure 5 Comparison of proband without genotyped parents to one of
its surrogates to illustrate crossover minimization. Alleles on both gametes
of proband (pai and mai) are compared to alleles on surrogate paternal
gamete (pas) to identify a shared chromosome segment, where ? is a pos-
sible match, + is a match, and – is a nonmatch. The proband shares pai
with the surrogate at the start of the chromosome and then this switches
to mai. The “switch” loci could be a crossover in the surrogate or, more
likely, the paternal and maternal gametes need to be “flipped” in the
proband. Proband gametes are flipped only if, after cycling through all
surrogates and storing information on all crossovers, there is more evi-
dence for crossovers than no crossovers. Offsets are applied but not
shown in the diagram for simplicity.
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from the respective sparse densities (Imp). The G matrices
were then fitted with phenotypes in ASReml to produce
genomic breeding values (Gilmour et al. 2000). The QTL
were not masked; that is, they were part of the dense geno-
type data. This was expected to increase the difference in
genomic evaluation accuracy between the Dense and Imp
scenarios. The accuracy of the genomic evaluation was cal-
culated as the statistical correlation between genomic and
true breeding values in the training set.

Comparison with other programs

Our algorithm was compared to the fastPHASE program
(Scheet and Stephens 2006). The algorithm described by
Burdick et al. (2006) was also used to impute missing geno-
types. Default settings were used in all cases, as preliminary
investigations showed that altering the settings changed the
accuracy of imputation ,1%.

Testing in real Holstein data

Imputation accuracy was tested in a data set of 1183
Holstein bulls, which were densely genotyped with the
Illumina Bovine 50K array. Quality control reduced the
number of SNP to 39048 SNP and is described in more detail
in Hayes et al. (2009a). A pedigree consisting of 3674 ani-
mals was used to gather the genotyped relatives for each
proband. We tested the imputation accuracy on chromo-
some 1, which had 2529 SNP available. Two scenarios were
tested, one in which missing genotypes were imputed from
the SNPs on the Illumina Bovine 3K to 50K density and one
in which we imputed only 5% of SNP in the 50K SNP chip.
The second case was designed to mimic imputing upward
from the 50K chip density, because if our algorithm can
impute this scenario with a certain accuracy then we should
be able to impute from 50K to say 800K or even to full
sequence with at least the same accuracy. The Illumina 3K
chip had 182 SNP on chromosome 1. Operationally, instead
of regenotyping with the 3K chip, we blanked out and im-
puted the nonsparse SNP in the 50K chip. We tested the
imputation of 5% of SNP by random masking. Imputed gen-
otypes were then compared to real 50K genotypes once the
algorithm had completed to assess imputation accuracy.

Results

Phasing

Phasing was evaluated in all nonfounders and results can be
found in Table 1. The percentage of alleles phased correctly

when compared to true alleles was high, ranging from
99.97%, when all generations were available, to 99.91%
when only 2 generations were included. Errors decreased
slightly as the number of generations increased.

Imputation

Similar trends to phasing were observed for the accuracy of
imputation. Table 2 shows means of 25 replicates of imput-
ing missing genotypes at three different sparse densities.
The percentage of correctly imputed genotypes was greatest
when four generations of data (three generations of dense
genotypes and last generation sparse) were available. How-
ever, performance was only slightly reduced when three
generations were in the data set. The number of nonim-
puted genotypes increased slightly as the number of gener-
ations decreased. The proportion of correctly imputed loci
increased and the proportion of wrongly imputed genotypes
decreased as the density of the sparse genotypes increased.
In Table 3, one can observe that as soon as some individuals
(20%) in the last generation have dense genotypes, more
information flows to the sparsely genotyped individuals and
the proportion of correctly imputed genotypes increases by
�5%. This demonstrates that collateral relatives can be used
to improve imputation of missing genotypes when the num-
ber of ancestral dense genotypes is limited. When using two
or three generations of dense data to impute 80% of sparsely
genotyped individuals in the last generation, very similar
results to imputing all individuals were obtained. This shows
that with sufficient ancestral information, dense genotyping
of collateral relatives is of limited value (results not shown).

ChromoPhase correctly imputed approximately 12–16%
more missing genotypes than fastPHASE for the scenarios
tested (Table 4). Our algorithm was also tested against that
of Burdick et al. (2006) and was found to impute at least
27% more loci. This may be because the Burdick et al. (2006)
approach was not designed to handle very sparse marker
densities. Computation time in CPU time for ChromoPhase,
fastPHASE, and Burdick et al. (2006) were approximately 30
CPU seconds, 3 hr 19 min, and 20 sec, respectively.

The accuracy of genomic evaluation (correlation of
predicted and true breeding values) using dense genotypes

Table 1 Phasing performance in percent in paternal alleles of
nonfounder individuals when the data set consisted of 4, 3, or 2
generations (Gen.) of genotyped animals (maximum SE , 0.01)

Gen. Correct Missing Wrong

4 99.97 0.01 0.02
3 99.96 0.01 0.02
2 99.91 0.03 0.07

Table 2 Imputation performance (%) when imputing missing
genotypes in all individuals in the last generation for three
different sparse densities per Morgan and 4, 3, or 2 generations
(Gen.) included in the data set (maximum SE , 1.72%)

Genotypes

Gen. Sparse density Correct Missing Wrong

4 14 87.79 0.87 11.34
4 34 94.13 0.29 5.58
4 100 98.67 0.06 1.27
3 14 87.80 1.00 11.20
3 34 94.07 0.31 5.62
3 100 98.57 0.08 1.36
2 14 81.36 1.48 17.2
2 34 83.62 1.49 14.89
2 100 87.07 1.93 11.00
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to calculate the genomic relationship matrix (G) was 75.5%
(Table 5). While the depth of the data set was varied be-
tween two and four generations, only the last two genera-
tions (300 animals) were used to estimate genomic breeding
values to keep the sample size constant. The accuracies of
the sparse scenarios were all very similar at 56.1%. At these
low densities, increasing the sparse loci set slightly seemed
not to increase accuracy. As expected, accuracy increased
when more missing genotypes were imputed. However, it
was apparent that although imputation was imperfect, the
accuracy of genomic estimated breeding values achieved for
the sparse subset of markers as a percentage of that
achieved for the dense accuracy (i.e., accuracy with 1500
loci) was in all cases greater than the proportion of correctly
imputed genotypes (Table 5). Consider the scenario with
three generations in the data set and a sparse genotype of
14 loci/M; here 87.8% of missing genotypes were correctly
imputed but 95% of the dense genomic evaluation accuracy
was achieved. Thus, it seems that genomic evaluation is able
to cope well with a percentage of loci missing or even
wrongly imputed, which has been confirmed independently
by Weigel et al. (2010) using a Bayesian method to estimate
SNP effects for genomic predictions.

Real data present additional challenges such as ungen-
otyped parents, genotyping errors, and map location errors.
Thus the imputation accuracy in real Holstein cattle data
was reduced when compared to results in simulated data
(Table 6). Nevertheless, the imputation accuracy in real
Holstein cattle data using the sparse 3K chip was 92.5% in
nonfounders and 72.8% in founders. When 5% of 50K loci
were randomly masked, the imputation accuracy was 97.2%
in nonfounders and 90.2% in founders. The lower perfor-
mance in real data when compared to simulated data is due
in part to imperfections in the real data, such as map and
genotyping errors. In addition, there were many more gen-
otyped founders in the simulated data set and our Holstein
data set contained no genotyped dams. It is expected that in
the future more genotypes would be available (including
more dams), which would allow imputation accuracy in real
data to move toward results achieved in simulated data.

Discussion

We have described a long-range phasing and imputation
algorithm that seeks out and phases long chromosomal

segments that are shared between close or distant relatives.
The algorithm takes advantage of family data, in addition to
population data, to improve performance over methods that
phase per locus or consider only a few loci at a time and use
population data only. The results demonstrate that Chro-
moPhase is accurate for both pure phasing of genotyped loci
and for imputation of missing genotypes. The identification
of shared chromosome segments is important to phase and
impute genotypes, as any missing information within a
segment can potentially be filled in the proband with
information from its surrogate. The key aspect of identifying
a shared segment is the recognition that the probability that
a long haplotype coalesces to a common ancestor becomes
high if two animals match at a high proportion of alleles
within a segment and there are no nonmatches. Kong et al.
(2008) made use of this concept in individuals of unknown
relationship by searching for a sufficiently long stretch of
loci with no incompatible genotypes that can therefore be
assumed to have originated in a common ancestor. All po-
tential surrogates of a proband for a genome segment of
predefined length were identified and stored at the begin-
ning of the Kong algorithm. They then phased a proband by
cycling through its surrogates to identify a homozygote at
a particular locus. Our approach is similar, but operationally
different, as we also make use of pedigree information and
thus we are able to compare alleles within family relation-
ships and to compare at the level of the allele instead of
genotypes. Our algorithm compares relatives in each itera-
tion and genomic surrogates in later iterations to make use
of new information as it becomes available and we do not
specify a maximum length for shared segments. Thus,
a shared segment may potentially span the full chromosome
and allows us to use all available information. Consequently
ChromoPhase uses most of the information used by Kong
et al. (2008), but uses some additional information, such
as pedigree and simple rule-based filling.

The use of both family and population genomic in-
formation makes our approach feasible in species that have
incomplete pedigree information or have only few parents
with dense genotypes. Genotyped parents allow for rule-
based filling of alleles, which is important in early iterations
as little information is available to distinguish gametes. Our
results indicate that having at least one densely genotyped
parent is crucial to achieving high-accuracy imputation. This
is partly because rule-based filling is difficult in individuals

Table 3 Imputation performance (%) when imputing missing
genotypes in 80% of individuals in the last generation for three
different sparse densities per Morgan and 2 generations (Gen.)
included in the data set (maximum SE , 1.5%)

Genotypes

Gen. Sparse density Correct Missing Wrong

2 14 84.89 1.37 13.75
2 34 89.39 0.86 9.76
2 100 94.09 0.61 5.30

Table 4 Imputation performance of ChromoPhase, fastPHASE and
Burdick et al. (2006) in replicate 1, shown as the percentage of
correctly imputed missing genotypes in all individuals in the last
generation for three different sparse densities per Morgan and 3
generations (Gen.) included in the data set

Gen.
Sparse
density ChromoPhase fastPHASE

Burdick et al.
(2006)

3 14 87.8 75.3 60.5
3 34 94.1 78.6 60.8
3 100 98.6 85.0 61.6
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without genotyped parents and therefore a larger number of
phasing or imputation errors are likely to occur in these
founders. Imputation is especially difficult in younger
animals that have no genotyped parents or genotyped
offspring available (Table 6). Our algorithm may need fur-
ther development to be able to capitalize on population
linkage disequilibrium more effectively and improve impu-
tation rates in founders. However, comparing to relatives, if
available, results in significant computer time savings, as
animals do not have to be compared to all other animals.
Furthermore, restricting comparisons to relatives in the first
iterations reduced error rates.

The comparison of haplotypes in our algorithm also
results in computational efficiency because the same process
is used for phasing and imputation. The main objective of
ChromoPhase is to complete as much information as possible
in a proband haplotype by using information from shared
segments with relatives. It is therefore irrelevant from the
method’s point of view whether this is for phasing or impu-
tation, although the algorithm benefits when genotypes are
available at a locus.

Haplotype libraries have been proposed as a way to phase
and impute genotypes (Hickey et al. 2011; Vanraden et al.
2011). Conceptually, these approaches are not very different
from ChromoPhase. While they explicitly build a library of
haplotypes, our algorithm contains the haplotypes in each
individual with dense genotypes. A library may provide com-
putational efficiencies when there are only few main haplo-
types segregating in a population so that the proband needs
only to be compared to few haplotypes. This may be the case
in domestic animal populations with low Ne. A drawback of
the library approach is that the haplotypes are restricted to
a specific length. As an example, consider a SNP that has
been mapped to the wrong location on the genome or has
been incorrectly genotyped in the lab. First, this would in-
flate the number of haplotypes stored in the library and,
second, if an individual has a genotyping error, a match
cannot be identified in the library for that whole segment,

resulting in reduced imputation. In contrast, our approach
compares animals up to the map or genotyping error and, if
a nonmatch occurs, will stop the shared segment. However,
the next shared segment may start right after the nonmatch
increasing imputation when compared to a library approach.

The application of our method in real data sets may
require further development to address several challenges,
such as completely ungenotyped animals in the data,
incomplete pedigrees, genotyping errors, rare alleles, and
SNP mapped to wrong genome locations. Currently, com-
pletely ungenotyped individuals are not attempted to be
imputed. However, doing so should be feasible if an
ungenotyped individual has both a genotyped parent and
genotyped progeny. It is not expected that imputing com-
pletely ungenotyped individuals would increase imputation
rates, as they offer no additional information. In fact, it was
observed that more errors occurred when ungenotyped
animals were imputed and used to impute sparsely geno-
typed animals, because proportionally more errors occur in
completely ungenotyped animals, which then transfer to
sparsely imputed animals. It is also important that correct
and as complete as possible pedigree information is avail-
able for determining surrogates. Most genotyping errors can
be detected by comparing trios, although if they are not
detected then they may result in erroneous haplotype
assignments. Rare alleles can be imputed only if they are
observed in the dense genotypes; hence the dense sample
needs to be sufficiently large. Map errors may cause
a wrongly mapped locus to appear shared between relatives
where it may be a match only by chance (i.e., it is only IBS)
causing phasing errors. Every effort should be made to cor-
rect map errors on SNP chips.

Currently the algorithm applies to autosomes and further
modification to sex chromosomes may be necessary. Cross-
over occurs freely between X chromosomes; hence phasing
involving females is expected to be the same as autosomes.
Simplification may be possible in males because X-specific
markers in the nonparalogous region are already phased.
Pseudoautosomal crossover between X and Y is believed to
be restricted to the relatively short regions at either end of
the X chromosome in human representing approximately
2% of all bases in total (Charlesworth 1991; Ross et al.
2005). It has been reported that the ratio of genetic vs.
physical distance is inflated in the pseudoautosomal region,

Table 5 Accuracy of estimated breeding values in percent when
using dense (Dense), sparse (Sparse), and imputed (Imp) genotypes
to calculate realized relationship matrices (maximum SE , 1.0%)

Gen. Density Scenario
Accuracy of

genomic evaluation
% of all dense

accuracy

1500 Dense 75.5 100.0
Sparse 56.1 74.3

4 14 Imp 71.7 95.0
4 34 Imp 74.1 98.1
4 100 Imp 75.5 100.0
3 14 Imp 71.7 95.0
3 34 Imp 74.0 98.0
3 100 Imp 75.5 100.0
2 14 Imp 68.8 91.1
2 34 Imp 71.2 94.3
2 100 Imp 72.7 96.3

Gen. refers to the number of generations in data set used for imputation. Sample
size 300 (i.e., last two generations) for genomic evaluation in all scenarios.

Table 6 Imputation performance of ChromoPhase in percent on
chromosome one in real Holstein cattle data tabulated as the
percentage correctly imputed missing genotypes in the youngest
founders (F) and nonfounders (NF) for two sparse densities

Sparse
density Type

No. of animals
imputed

Genotypes

Correct Missing Wrong

182 NF 112 92.5 1.1 6.3
182 F 212 72.8 0.6 26.5
2400 NF 112 97.2 1.3 1.5
2400 F 278 90.2 0.7 9.1
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which may indicate high haplotype diversity (e.g., Arias et al.
2009; Dumont et al. 2011).

The application highlighted here is to impute haplotypes
and missing genotypes from sparse to medium density. The
current study confirms that it is feasible to impute a large
number of missing genotypes to a higher density, although the
performance is dependent on the sparse chip density and the
number of generations in the data set. It will be feasible to use
our method to impute 50K genotypes to even higher density
once information from such denser SNP chips becomes
available in their relatives. So there is no upper limit to how
dense the genotypes can be for successful imputation, and
even imputing full genome sequence data will eventually be
possible once sufficient ancestors have been sequenced.

An interesting result is that when we applied genomic
evaluation to the dense, sparse and imputed data sets, the
reduction in genomic evaluation accuracy is small with
imperfectly imputed genotype data. It was apparent that
while imputation is imperfect, the proportion of dense
accuracy observed was in all cases larger than the pro-
portion of correctly imputed genotypes. This may be due to
more than one SNP being in linkage disequilibrium with
each of the QTL across the genome, so that the consequence
of a single incorrectly imputed SNP on predicting the effect
on a QTL is reduced.

The potential for ChromoPhase to increase the number of
genotyped individuals while simultaneously reducing geno-
typing costs is very large. Key benefits will be increased
sample sizes to achieve higher accuracies in genomic
selection and to increase the power of QTL studies. Re-
ducing genotyping costs through strategic genotyping of
ancestors and upgrading to denser genotyping from sparser
SNP chips in the current generation with programs such as
ChromoPhase will allow for the application of genomic
selection in species for which currently this technology is not
economically feasible.
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• Read sorted pedigree 
• Read genotypes 
• Collect relatives from youngest to oldest 

o If sire(proband) known 
 Add proband to offspring of sire 
 If sire genotyped 

• Add sire to paternal relatives of proband 
 End if 
 If proband is genotyped 

• Add proband to list of descendents of sire 
• Store degree removed of proband to sire 

 Else 
• Store genotyped descendents of proband as descendents of sire 
• Increase degree removed by 1 

 End if 
o Do same process for dam(proband) 

• Collect surrogate fathers and mothers, from oldest to youngest 
o If sire(proband) known 

 If sire(proband) not genotyped 
• Add all paternal relatives of sire to paternal relatives of proband 
• Increase degree removed of each new paternal relative by 1 
• Do same for maternal relatives of sire 
• If sib(proband) genotyped 

o Add to paternal relatives of proband 
• Else 

o Add all sibs descendents to paternal relatives of proband 
• End if 

 End if 
o End if 
o Do same for dam of proband 

• Collect all relatives in one array 
o Loop through paternal, maternal relatives and descendents 

 Add to list of relatives 
 Store degree removed 
 Store whether paternal (1), maternal (2) or descendent (3) 

o End loop 
• Set desired SNP to missing to test imputation in genotyped animals 

o Store full genotypes in array for later checking 
o Option 1,  read SNP to be set to missing from file 

 Set logical variable for SNP set to missing ‘impute‐snp to true  (initialised as 
false) 

 Randomly choose desired proportion of probands as animals to be imputed 
and set logical variable ‘impute‐animal’ to true (initialised as false) 

 Loop through all probands 
• Where impute‐animal and impute‐snp is true, set genotype to 5 

(missing) 
 End loop 

• Option 2, set random SNP to missing instead of reading in list, choose impute‐animal as 
above 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• Set genotyping errors to missing and detect pedigree errors 
o If proband and sire(proband) are genotyped 

 Loop through SNP 
• If homozygote genotypes oppose 

o Loop through other offspring of sire 
 If no other offspring conflict with sire 

• set only original proband genotype to 5 
 Else if sire is in conflict with more than 20% of 

offspring 
•  set sire genotype to 5 

 Else  
• Set this genotype to 5 for sire and all 

offspring 
 End if 

o End loop 
• End if 

 End loop 
o Do same for dams 

• Initialise haplotypes 
o If proband genotype is known and homozygous 

 Fill in both haplotypes 
o Else 

 Set both haplotypes to 5 
o End if 

 
Start iterations through all genotyped probands 

• If iteration = maximum phasing iteration 
o Cut offset (number of loci cut of end of shared segments) to 0 
o Set minimum length of shared segments to 50 loci 

• Else if iteration >  phasing iteration 
o Reset offset and run length to original values, 20 and 100, respectively 

• End if 
• If iteration = maximum imputation iteration 

o Cut offset (number of loci cut of end of shared segments) to 0 
o Set minimum length of shared segments to 50 loci 

• End if 
• If iteration = 1, call COLL_GENOMIC_SURROGATE(FALSE) 
• If iteration  >  max. phasing iteration +1, call COLL_GENOMIC_SURROGATE(TRUE) 
• Loop through all genotyped probands 

o If iteration ≤ max. phasing iteration 
 only loop through animals with full genotypes 

o else  
 only loop through imputed animals 

o end if 
o In first three phasing or imputation iterations,  re‐initialise haplotypes 
o If sire(proband) OR dam(proband) are genotyped (i.e. proband is a non‐founder) 

 Apply rule‐based filling of haplotypes 
 Loop through relatives with dense genotypes < 4 degrees removed 

• Call ID_SHARED_RUN_NON_FOUNDER 
• In last imputation iteration call FIND_RUN_NON_FOUNDER 

 End loop 
 If iteration > phasing iteration ‐2 

• Loop through genomic surrogates 
o Call ID_SHARED_RUN_NON_FOUNDER 

• End loop 
 End if 
 Call VOTE 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o Else (i.e. proband has no genotyped parents, Founder) 
 Loop through relatives with dense genotypes < 4 degrees removed 

• Call FIND_RUN_FOUNDERS(TRUE) 
 End loop 
 If iteration = max phasing iteration OR iteration > max. phasing + 2 

• Loop through genomic surrogates 
o Call FIND_RUN_FOUNDERS(TRUE) 

• End loop 
 End if 
 Check for apparent crossovers 

• Loop  20 times 
o If no evidence for erroneous crossovers  EXIT loop 
o Loop through relatives 

 Call FIND_RUN_FOUNDERS(FALSE) 
o End loop 
o If iteration > phasing iteration ‐2 

 Loop through genomic surrogates 
• Call FIND_RUN_FOUNDERS(FALSE) 

 End loop 
o End if 
o Call FLIP_CROSSOVERS 

• End loop 
o End loop for non‐founders and founders 

• End loop through probands 
End iteration 
 

• Evaluate imputation by comparing imputed genotypes to original dense genotypes 
• In simulated data, evaluate phasing 

 
 
 
SUBROUTINES: 
 
COLL_GENOMIC_SURROGATE (logical) 

• Loop through genotyped animals 
o If logical=FALSE 

 If animal to be imputed, CYCLE 
 Set min‐genomic‐surrogate‐segment = minimum length of shared run 

o Else if logical=TRUE 
 If densely genotyped animal, CYCLE 
 Set min‐genomic‐surrogate‐segment = (minimum length of shared run)*4 

o End if 
o Loop through densely genotyped animals 

 Loop through SNP 
• If segment count > min‐genomic‐surrogate‐segment, EXIT 
• If logical=FALSE 

o If abs(proband genotype – surrogate genotype) ≠ 2 
 Increase segment count by 1 

o Else 
 Segment count = 0 

o End if 
• Else if logical = TRUE 

o If proband genotype = surrogate genotype 
 Increase segment count by 1 

o Else if proband genotype ≠ surrogate genotype 
 If proband genotype homozygous  

• Segment count = 0 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 End if 
o End if 

• End if 
 End loop 
 If segment count > min‐genomic‐surrogate‐segment 

• Add densely genotyped animal to proband’s list of genomic 
surrogates 

 End if 
 Segment count = 0 

o End loop 
• End loop 

 
 
 
 
ID_SHARED_RUN_NON_FOUNDER  

• If densely genotyped proband, threshold for missing info = 0.20 
• If iteration = max. phasing iteration, threshold for missing info = 1.00 (i.e. no threshold) 
• Loop through SNP 

o Check if proband haplotype matches surrogate’s 
o If it matches 

 Increase loci count by 1 
 If proband haplotype = 5, then increase missing loci count by 1 

o Else 
 If ratio‐missing > (1‐ proportion‐SNP‐to be imputed/2), multiply offset by 4 
 If run long enough and ratio of missing info < threshold 

• Apply offset to length of run 
• Loop through remaining run of loci 

o If surrogate haplotype = 5 
 Number total counts +1 

o End if 
o If surrogate haplotype = 2 

 Number 2counts +1 
o End if 

• End loop 
 End if 

o End if 
• End loop 

 
 
VOTE 

• Loop through SNP 
o Loop through proband chromosomes 

 If proband haplotype = 5 
• If no information found in surrogates (i.e. number total counts = 0) 

o Allele ratio = 0.5 
• Else  

o Allele ratio = number 2counts / number total counts 
• End if 

 End if 
 If proband haplotype = 5 

• If allele ratio > 0.7 
o Proband haplotype = 2 

• Else if allele ratio < 0.3  
o Proband haplotype = 0 

• Else 
o Proband haplotype = 5 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• End id 
 End if 

o End loop 
• End loop 

 
 
FIND_RUN_NON_FOUNDER 

• Loop through proband haplotypes 
o Loop through SNP 

 Check if proband haplotype matches surrogate’s haplotype 
• If it matches  

o Loci count + 1 
o If either haplotype missing, missing loci count + 1 

• Else if loci count > minimum run length AND proportion missing 
loci < 0.5 

o If ratio‐missing > (1‐ proportion‐SNP‐to be imputed/2), 
multiply offset by 4 

o Apply offset to length of run 
o Loop through remaining run of loci 

 If proband haplotype = 5 
• Fill with allele of surrogate if known 

 End if 
o End loop 
o Reset loci and missing loci count 

• End if 
o End loop 

• End loop 
 
 
 
 
FIND_RUN_FOUNDERS(logical) 

• Loop through SNP 
o Check if either proband haplotype matches surrogate haplotype 
o If one or both match and matching haplotype has not switched from previous locus 

 Store which haplotype matched 
 If no previous match, set SNP as first in run 
 Increase loci count by 1 
 If any of the haplotypes are 5, increase missing loci count by 1 

o End if 
o If haplotypes do not match 

 If loci count > minimum run length AND proportion missing loci < 0.5 
• Define last SNP in run as previous SNP 
• If (logical)=FALSE 

o Count crossovers and non‐crossovers at each locus in run 
• Else 

o If ratio‐missing > (1‐ proportion‐SNP‐to be imputed/2), 
multiply offset by 4 

o Apply offset to length of run 
o Loop through remaining run of loci 

 If proband haplotype = 5 
• Fill with allele of surrogate if known 

 End if 
o End loop 

• End if 
 End if 
 Store 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 Reset loci count and missing loci count to zero 
o End if 
o If matching switched from one proband haplotype to the other 

 Set first SNP in new run 
 Store which haplotype matched 

o End if 
• End loop  

 
FLIP_CROSSOVERS 

• Set maximum crossover ratio to 0.99 
• Loop through SNP 

o If ratio of ( crossovers / (no‐crossovers +1)) > maximum crossover ratio 
 maximum crossover ratio = crossovers / (no‐crossovers+1) 
 RSNP = locus  
 Flag=1 

o else 
 if (Flag=1) then 

• crossover‐point (i) = RSNP 
• crossover‐ratio(i)=maxrec 
• Flag=0 
• maxrec = 0.99 
• i = i + 1 

 end if 
o end if 

• end loop 
 

• if i > 1 
o loop through i’s in pairs 

 if crossover‐ratio ≥ 1.0 
• flip all loci between i’s 

 end if 
o end loop 

• end if 


