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ABSTRACT:  Modern animal breeding datasets are large and getting larger, due in part to recent availability of 

high-density single nucleotide polymorphism arrays and cheap sequencing technology. High-performance 

computing methods for efficient data warehousing and analysis are under development. Financial and security 

considerations are important when using shared clusters. Sound software engineering practices are needed, and 

it is better to use existing solutions when possible. Storage requirements for genotypes are modest, although 

full-sequence data will require greater storage capacity. Storage requirements for intermediate and results files 

for genetic evaluations are much greater, particularly when multiple runs must be stored for research and 

validation studies. The greatest gains in accuracy from genomic selection have been realized for traits of low 

heritability, and there is increasing interest in new health and management traits. The collection of sufficient 

phenotypes to produce accurate evaluations may take many years, and high-reliability proofs for older bulls are 

needed to estimate marker effects. Data mining algorithms applied to large datasets may help identify 

unexpected relationships in the data, and improved visualization tools will provide insights. Genomic selection 

using large data requires a lot of computing power, particularly when large fractions of the population are 

genotyped. Theoretical improvements have made possible the inversion of large numerator relationship 

matrices, permitted the solving of large systems of equations, and produced fast algorithms for variance 

components estimation. Recent work shows that single-step approaches combining BLUP with a genomic 

relationship (G) matrix have similar computational requirements to traditional BLUP, and the limiting factor is 

the construction and inversion of G for many genotypes. A naive algorithm for creating G for 14,000 

individuals required almost 24 h to run, but custom libraries and parallel computing reduced that to 15 m. Large 

datasets also create challenges for the delivery of genetic evaluations that must be overcome in a way that does 

not disrupt the transition from conventional to genomic evaluations. Processing time is important, especially as 

real-time systems for on-farm decisions are developed. The ultimate value of these systems is to decrease time-

to-results in research, increase accuracy in genomic evaluations and accelerate rates of genetic improvement. 
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INTRODUCTION 

From a scientific perspective, ‘Big Data’ is the point at which the amount of data to be analyzed is larger 

than the capacity of the available hardware and software to obtain results in a reasonable amount of time. 

Simply put, one has more data than one can handle in a pre-defined, discrete time step. For financial firms, Big 

Data means delivering trading-related data analysis at near-instantaneous intervals. At the European 

Organization for Nuclear Research, the Large Hadron Collider generates one petabyte (i.e., 10
15

 bytes) of data 

every second during a single experiment (ACM, 2011), most of which is filtered and immediately discarded 

because analysis of all of those data is infeasible. 

Over the last 5 yr, the amount of information created globally has grown by a factor of nine, and the 

zettabyte (i.e., 10
21

 bytes) mark was surpassed for the first time in 2010. In a recent report (IDC, 2011), it was 

estimated that in 2011 alone 1.8 zettabytes of information would be created and replicated. At the same time, 

the cost of creating, capturing, managing, and storing data today is 1/6 of what it was in 2005 (IDC, 2011). This 

challenge is just as significant in the sciences as in financial services or other industries. 

The primary challenge with Big Data in genetic improvement of livestock is that our ability to gather 

data far outpaces our ability to analyze it. With these thoughts in mind, the objective of this paper is to provide 

an overview of issues and technologies involved in the management and utilization of very large datasets. 

Specifically, a look at hardware and software technologies important to high performance computing, 

manipulation and visualization of very large datasets, the evolution of genetic evaluation programs to handle 

very large datasets, and the implementation of commercial genetic evaluation schemes. 

DATA COLLECTION 

Before calculations can be performed, phenotypes must be defined, observations collected, and their 

quality assessed. Incomplete or low-quality data may lead to inconclusive results or, more importantly, 

erroneous conclusions. Once a suitable collection of data has been assembled, they can be analyzed to identify 

patterns and associations among variables. When working with big data, none of these tasks are trivial. In this 

section, strategies for dealing with each of these problems are addressed. 
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Current and Novel Phenotypes 

Information of interest varies across species, but observations generally are related to animal 

identification, production environment, and performance. This section will focus specifically on dairy cattle, but 

points applicable regardless of species will be emphasized. Accurate animal identification is necessary to 

associate phenotypes with genotypes. Performance data are recorded on the farm, where they are associated 

with an animal identification code, and records from herds enrolled in the national milk recording program are 

collected in the National Dairy Database (NDDB). Pedigree and conformation data are available for registered 

(i.e., purebred) cattle. Phenotypes may be placed into several broad groups, including milk volume and 

composition, reproduction, and health and fitness. The number of phenotypes can become very large (Table 1); 

for example, genetic evaluations are routinely calculated for 31 traits in U.S. Holsteins. Despite the broad range 

of phenotypes currently evaluated, interest in additional traits continues to grow. 

In the U.S., SNP genotypes were now available for 116,980 Holstein cows and bulls as of August, 2011, 

including 43,525 3K, 72,311 50K, and 1,144 700K genotypes. Due to the cost of genotyping, only bulls and a 

few influential cows were initially genotyped, but the development of the Illumina Bovine3K BEAD chip 

(Illumina, Inc., San Diego, CA) has resulted in the genotyping of more than 42,500 cows, as of July, 2011 

(Wiggans et al., 2011). In addition, an international project is currently underway to generate full-sequence data 

for 100 cattle representing many taurine and indicene breeds (T. S. Sonstegard, Bovine Functional Genomics 

Laboratory, USDA, ARS, Beltsville, MD, personal communication). 

There are many data of interest that are not routinely recorded, such as information about farm and herd 

management, but which are currently partially available in the NDDB. There is growing interest in developing 

cattle that are robust in the face of global climate change, which will require improved understanding of 

genotype-by-environment interactions. The precise geographic location of animals, as well as climate data (e.g., 

temperature, relative humidity, and precipitation), is necessary for this research. Methodology for the evaluation 

and identification of heat tolerant animals using weather data has been reported (Misztal et al. 2010). Calus et 

al. (2005) have discussed some applications of detailed farm management information, such as housing systems 

and feeding programs. Feed intake is potentially useful as a proxy for energetic efficiency (Herd and Arthur, 
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2009), but phenotypes are currently expensive to collect. Therefore, methods to predict body energy status from 

routinely gathered milk spectral data have been explored (McParland et al., 2011). There also is growing 

interest in milk composition as it relates to human health, with recent efforts focusing on fatty acid composition 

(Caroli et al., 2009; Soyeurt et al., 2011). 

Other data of interest are either not routinely recorded in on-farm computer systems, or are not 

transmitted through the milk recording system to the NDDB. Of particular interest are traits related to animal 

health and fitness, such as disease incidence, which have been collected in some countries for many years. Cole 

et al. (2008) have developed a data exchange format for health event data for use in the U.S., and the 

International Committee for Animal Recording is currently finalizing an international standard (Egger-Danner 

et al., 2011). Body condition scores (Berry et al., 2003, Banos and Coffey, 2010), birth weights, and mature-

weights have applications in herd management, and selection for desirable body condition scores may result in 

improved fertility, longevity, and lifetime profitability. Female fertility is probably best thought of as a complex 

of related phenotypes associated with the ability of a cow to cycle normally, display estrus, conceive upon 

breeding, and carry a pregnancy to term (Interbull, 2011). Some fertility data are included in the NDDB but 

more complete recording of phenotypes is desirable, particularly of insemination events. Recording the use of 

estrous synchronization also may be helpful for avoiding bias in fertility evaluations. 

Some technologies, such as radiofrequency ID (RFID) tags, are valuable because they improve accuracy 

of data recording by reducing error rates. New technologies also are enabling collection of many novel 

phenotypes. For example, many electronic milk meters are capable of recording information on milk yield and 

milking speed. Some systems are even capable of measuring electrical conductivity, progesterone levels, lactose 

content, temperature, somatic cell count, and fat and protein concentrations in real-time (e.g., AfiLab, S.A.E. 

AFIKIM, Kibbutz Afikim, Israel) . Pedometers have proven to be useful tools for monitoring changes in 

activity associated with estrous behavior and the onset of disease (Edwards and Tozer, 2004; Løvendahl and 

Chagunda, 2010). 
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Data Integration and Quality 

There are many regular data providers in the U.S. dairy industry, including the national milk recording 

system, purebred cattle organizations, AI firms, and genotyping laboratories. For example, during the week of 

July 18 through 22, 2011, dairy records processing centers transmitted to the Animal Improvement Programs 

Laboratory (ARS, USDA, Beltsville, MD) 1,317,255 test-day records and 630,035 fertility events. Data also are 

occasionally received from universities under research agreements, and genotypes have been exchanged among 

the U.S. and several other countries. 

Once the data have been received, they are integrated into a single, national dataset after undergoing an 

extensive series of edits to ensure data quality and consistency (Norman et al., 1994). Current implementation in 

software is approximately 64,000 source lines of code written in the  C  and Fortran languages, and the edited 

data are stored in a relational database. The fundamental principle of this process is that similar data obtained 

from separate sources must match, and they must exhibit biologically plausible values. For example, when a 

calving record is received for inclusion in the dystocia and stillbirth dataset, the data are compared to the 

calving date that initiated the dam’s lactation, and the records are flagged if there is an inconsistency. Detailed 

error reports are sent to data providers so that records may be corrected. In some cases, records can be corrected 

automatically based on information from other sources, as in the case of erroneous parentage for genotyped 

individuals. Data also are examined to determine if values are biologically plausible, and abnormal observations 

may be adjusted (Wiggans et al., 2003). This process results in a national dataset that is reasonably error-free, 

but data extracted and used for genetic evaluation also undergo another set of edits. 

Data quality has generally been assessed in terms of consistency; if data from a new source are 

consistent with data from other sources, then the new data are of high quality. This is an appealing concept 

because it is simple to implement, but does not provide metrics that can be used to objectively compare data 

collection methods. Research by Dechow et al. (2008) indicates that within-herd heritability estimates may be 

useful as indicators of data quality, and their calculation is relatively straightforward. Widespread use of RFID 

tags and electronic readers help to improve quality by reducing errors in identification. VanRaden et al. (2011) 

have shown that many parentage errors can be corrected using SNP genotypes. 
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Data Mining 

The value of Big Data ultimately lies in their ability to inform decisions, whether it is the optimal 

service sire for a heifer mating or the proper diet for fresh cows. As we accumulate more and more data, the 

need grows for tools with which we can discover useful, possibly unexpected patterns in those data and report 

back to farmers in a timely and useful fashion. This can be done using tools for data mining (Tan et al., 2005) 

and data visualization (Cole and VanRaden, 2010). However, when working with big data, Bonferroni’s 

principle (Shaffer, 1995) must be remembered: if you look hard enough for interesting patterns, you will find 

them. Many of these relationships will be spurious, and researchers must ensure that they have enough data to 

support the questions being asked. 

Because some datasets are so large, most available software cannot accommodate all of the data at once. 

It is therefore important that an automated pipeline be developed to extract smaller subsets of the data through 

data mining. There are four principal tasks in data mining: 1) discovery of interesting relationships among 

variables in large datasets (i.e., association); 2) division of datasets into a number of discrete groups (i.e., 

clustering); 3) assignment of observations to groups (i.e., classification), and 4) prediction of real-valued 

outputs based on attributes of observational units (i.e., regression). Google, for example, developed MapReduce 

(Lin and Dyer, 2010) to process large amounts of raw web data into more manageable sets of key-value pairs.  

The MapReduce algorithm is actually a simple word-count algorithm that easily can be parallelized and scaled, 

and can be repurposed to process many different data types with very little effort. 

Association analysis in a data-mining context (Aggarwal and Yu, 1998) is based principally on counting 

methods, which is not equivalent to the genome-wide association analysis (e.g., Maltecca et al., 2011). 

Clustering (e.g., Everitt et al., 2001) is used to separate items into distinct groups such that items within a group 

are similar to one another, and items in separate groups are dissimilar. In partitional clustering, items may 

belong only to a single group, such as when SNP genotypes are called. In hierarchical schemes, items are nested 

in a tree-like structure and may belong to multiple groups, and are often used to represent relationships among 

species. Classification models (e.g., Hand, 1997) use rules to assign individuals into classes based on their 

attributes, and typically involve training and validation steps. There are many classification methods, including 
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Bayesian belief networks, decision trees, nearest-neighbor classification, neural networks, rule-based 

classification, and support vector machines.  All of these classification methods could be implemented as a 

MapReduce problem.  The results could feed into regression models (e.g., Cook and Weisberg, 1999) that are 

well known in animal breeding, and focus on the prediction of real-valued outputs, such as breeding values, 

feed intake, or milk yield. 

Visualization 

Data mining and visualization are often viewed as complementary topics; data mining uses numerical 

approaches to discover relationships in data, while visualization provides a way of representing many numbers 

in a compact form while retaining the information in the data. Cole and VanRaden (2010) recently described 

some approaches for the graphical display of data from animal breeding programs. There is general agreement 

on best practices (e.g., Tufte, 1983) for presenting data, and a wide array of available software solutions (e.g., 

Wickham, 2009). Several examples will be used to demonstrate techniques for sound graphical design that are 

applicable to a wide variety of situations. 

Figure 1 uses color to denote the chromosome on which a marker is located, and marker area is 

proportional to the magnitude of SNP effects. The three-generation pedigree for the Holstein bull Co-Op O-

Style Oman Just-ET (001HO09167) is shown in Figure 2, and traces the occurrence of crossovers and the 

inheritance of individual haplotypes for chromosome 15 from generation to generation. A verbal or written 

description would occupy more space and provide less information. The line graph in Figure 3 shows changes 

in average inbreeding from 1990 to 2010 for U.S. Brown Swiss, Holstein, and Jersey cattle. Breeds are 

differentiated from one another by both pattern and color, minimizing the risk that readers will confuse one 

series with another, particularly if the figure is later reproduced in grayscale. Tufte (2006) has proposed that 

small graphics be embedded in text and used similarly to words. Figure 4 shows an example from Cole and 

VanRaden (2009) demonstrating how so-called sparklines might be used is an animal breeding context. 

Effective visualization will grow in importance as relationships among traits continue to increase in importance. 
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COMPUTATIONAL CHALLENGES 

Big data pose a number of computational challenges that need to be addressed in parallel, much like big 

data themselves. On the hardware side, limitations are imposed by network bandwidth, component speeds, 

storage capacity, and the increasing complexity of modern central processing units, particularly when cost is a 

limiting factor. Some of these problems also can be attacked using high-performance programming languages, 

improved software engineering practices, and contributions from a broad-based community. Potential solutions 

to these problems based on recent experience are presented in this section. 

Computing Infrastructure for Big Data 

The increasing size of datasets exerts pressure on specific parts of the computing infrastructure. Moving 

a large file across a network is limited by available bandwidth and network connections speeds. Many 

institutions restrict connection speeds, sometimes to as little as 100 MB/s. At such speeds, it takes 10 min to 

move a 60 GB file, and almost 3 h to transfer a 1 TB file. A 1 GB/s network reduces the time required to move 

data, but other users of the network can be affected when the movement of large files saturates available 

bandwidth. One workaround is high-speed connections between machines engaged in moving big files while 

isolating them from the rest of the network by the use of switches. A second, decidedly more low-tech, option is 

to physically transfer external hard disks from one machine to another, avoiding the need to transmit data over 

the network. Limitations on the ability to move large data also place constraints on the special relationship 

between data and processing, which may favor cloud computing or put it at a disadvantage relative to local 

resources when Big Data has to be regularly refreshed. A more efficient but expensive solution is to use high-

throughput distributed storage that can serve files at 10 Gigabit Ethernet (1.25 GB/s) or InfiniBand (250 

MB·s
1

·channel
1 

to 3 GB·s
1

·channel
1

) speeds. 

System Speed vs. Component Speed 

The operational speed of a component is often used to describe how fast a system operates. However, 

the speed of the system as a whole is more important than that of individual components because the whole 

system is used for computation. Software development time also is affected by individual components, making 
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the choice of programming tools and the availability of skills important. One database engine may be better than 

another, and flat files and the C programming language may be fast, but all systems have limiting factors. It is 

increasingly the case that programmer skills and corporate information technology services are limiting factors. 

A very fast C program running on a very fast server with a slow network connection supported by a 

programming team that specializes in databases may not turn out to be fast in the long term. 

Data Storage 

Storage is perhaps the most fundamental problem with respect to Big Data facing the scientific 

community today. How much and where the data are stored depends on the stage of the research project, that is, 

retrieval, analysis, or archiving. These stages need not be distinct from one another, and they do not exclude 

other intermediary stages, such as data creation, pre-processing, cleaning, and mining. However, they do 

describe key stages in the data lifecycle that must be considered when working with large datasets. A researcher 

must at a minimum answer the following within the proper temporal scope: “How will I acquire, process, and 

archive the data?” 

When planning for the storage of Big Data, it is not enough to rely solely on density. During analysis, 

disk speed, network speed, and network bandwidth also must be considered in the context of data-size and time-

to-results requirements. Reading data from, and writing to, hard disks can have a high computational cost. On 

computers where random access memory (RAM) is limited, or where the job cannot fit entirely into available 

RAM, data are often paged in and out of main memory to a temporary storage area on disk. This process 

reduces computation speed because the central processing unit (CPU) spends many cycles on disk I/O. This can 

be accelerated by increasing memory or installing solid state disk drives (SSD), which have no moving parts, 

but possess very fast access speeds. These disks are currently expensive per GB and are best used tactically 

where they can be of greatest use. The use of SSD for temporary storage represents an ideal use case and can 

increase the performance of RAM-limited programs substantially. 

The costs of post-analysis archiving of Big Data may be greater than costs of regenerating the data de 

novo. The current cost of standard consumer-grade disk storage is about $21 per terabyte (S. Gilheany, 
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ArchiveBuilders.com, Manhattan Beach, CA, personal communication). However, more resilient storage is 

required for commercial services, and costs are typically 2 to 6 times more expensive for systems with built in 

redundancy. Unless the data will be frequently reused or shared, it may be more worthwhile to simply discard 

them, regenerating the data when necessary. 

Software Development 

Programming for Big Data means coding in such a way to distribute the work over many processing 

units working in parallel to reduce time-to-results. The amount of programming effort depends on many factors, 

including hardware architecture, whether or not existing code requires library updates, and the need to port or 

modify legacy code. Some problems also may be I/O-, memory-, or CPU-bound, and optimal solutions may 

require code that specifically accounts for those restrictions, as well as the use of different hardware. It is 

important that code be built to scale as data size increases or hardware capacity increases. Target hardware and 

programming language choices can greatly reduce the need for ongoing programming efforts as data increases 

in size. 

Each hardware architecture has unique advantages and disadvantages that should be considered relative 

to programming effort. For example, private clusters allow for rapid deployment of existing open source tools at 

the cost of managing all of the hardware. Cloud services can be used to expand computational capabilities on an 

ad hoc basis, but there may be few guarantees relative to hardware availability or security. Graphical processing 

units (GPU) are very efficient hardware, but they are memory-limited and hardware-specific coding 

requirements can substantially increase programming efforts. 

Mature open source mathematical libraries optimized for parallel processing are available for most 

traditional scientific computing languages (e.g., Fortran and C). An important advantage in using such 

languages is the availability of documentation and technical support. Both languages are commonly used to 

program supercomputers, in part because they are relatively easy to learn, and because they can be optimized 

for very fast execution. In contrast, Google’s search engine results are provided mostly by software written in 

high-level languages, such as Java and Python. High-level languages typically support greater abstraction and 
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provide extensive built-in libraries that reduce overall development time, and recent advances in interpreter 

technology provide those benefits with small performance penalties. 

The Open Compute Language (OpenCL) is an example of a programming language that provides high-

level tools for parallel programming, but also exposes hardware details as needed.   OpenCL uses a data/task-

parallel programming model that can be cross-compiled for different hardware architectures, allowing programs 

to function regardless of hardware upgrades or increases in data size. This avoids unnecessary duplication of 

effort when developing applications if, for example, the analysis moves from a private cluster to a GPU to a 

cloud service. More recently, new hybrid languages such as Clojure, PyCUDA, PyOpenCL, Scala, and Go, all 

feature abstraction, high performance, and hardware portability. In addition, they were created specifically to 

target Big Data problems running on multiple-core systems, as well as reduce programming effort. 

Utilization of New Technology 

In animal breeding, many computations are matrix-based and involve the multiplications and inversion 

of very large arrays (i.e., matrices). These are often a bottleneck in terms of speed, consuming the majority of 

computational time in any process. Modern graphics cards are becoming very powerful at specific tasks and can 

run many calculations in parallel on their GPU. This has led to the availability of a programming tool set and 

hardware platform that can be programmed directly and called from Fortran and C++ programs. The Compute 

Unified Device Architecture (CUDA; NVIDIA Corporation, 2011) enables animal breeders to use legacy 

Fortran or C/C++ code and offload certain computationally heavy subsections on to the GPU for faster solving. 

In some instances, increases in speed are at least an order of magnitude and, importantly, GPU are cheap. 

Computing with Graphics Hardware 

Modern video cards are based on GPU that are highly parallelized, and that processing capacity can be 

accessed through CUDA. The combination of GPU and CUDA is particularly powerful when applied to vector 

and matrix operations. Coffey and co-workers (M. Coffey, T. Krzyzelewski, K. Moore, and R. Mrode, 

unpublished data) have successfully refactored a problem involving multiplication of a large matrix of real 

numbers into a form that can easily be processed on GPU. Suppose that C = AA´, where A is a 7,072-by-47,280 
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matrix of floating point numbers. The problem may be broken down into blocks for parallel processing as: 

[A1
B

1

C
1

D
1
][A2

B
2

C
2

D
2
]=[A

1
A

2
+ B

1
C

2
A

1
B

2
+ B

1
D

2

C
1

A
2
+ D

1
C

2
C

1
B

2
+ D

1
D

2
]  

where A1, …, D1 are submatrices of A, and A2, …, D2 are submatrices of A´. This implementation 

results in much faster processing time by using GPU instead of CPU. The inversion of large matrices also is a 

common problem in genetic and genomic evaluations, and research is underway to develop a system in which a 

CPU-side process will determine GPU availability and then break-down matrices into suitably sized blocks for 

piecewise inversion. This should allow for the inversion of any matrix in a way that will utilize all available 

computing resources, either locally or in a cluster setting. 

Creating a Community 

Astronomers have pioneered over-wire data collection and dissemination. In the 1980s, two 

breakthroughs plunged the discipline into the world of Big Data: the internet and charged-coupled devices 

(Janesick, 2001). Astronomers went from analyzing large photographic plates to downloading high-resolution 

images from space-based telescopes. Far more data became available than could be analyzed by individuals or 

even groups of researchers. As internet access became widespread, hobbyists interested in astronomy were be 

recruited to participate in the analysis of those images, a technique that is commonly known as crowdsourcing. 

This approach is particularly useful for tasks that are easy for humans but difficult for computers, such as 

identifying meaningful patterns in images. 

One example of crowdsourcing is the Zooniverse (Moore, 2011) project of the Citizen Science Alliance. 

The Zooniverse asks the public to play games with real data using a Web interface. Members of the general 

public can hunt for supernovae, identify solar flares, or transcribe weather observations recorded aboard ships 

during World War I. In fact, crowdsourcing does not require input from benevolent individuals. The 

reCAPTCHA initiative (von Ahn, 2008) adapted a strategy for distinguishing human users from spam bots on 

websites into a tool for correcting errors in digitized books. Such public engagement provides independent 

verification of individual data points and error correction. Because of their popularity, social networks and 
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online games (e.g., Farmville) may provide a conceptual framework for solving scientific problems. 

IMPLEMENTATION OF GENOMIC EVALUATIONS 

Genomic Evaluation 

Historically, theoretical improvements in animal breeding made possible the inversion of the numerator 

relationship matrix (Henderson, 1975), a problem that commonly exceeded the computing resources available at 

the time. This allowed the use of mixed model theory for the computation of estimated breeding values and 

estimation of variance components (Henderson, 1984), although the size of the systems of equations to be 

solved quickly became impractical for large-scale genetic evaluations. So-called ‘iteration on-data’ methods, 

which do not require storing mixed model equations in computer memory, were then developed to solve that 

problem. A series of algorithms were proposed, including Gauss-Seidel or successive over-relaxation (Schaeffer 

and Kennedy, 1986), second order Jacobi (Misztal and Gianola, 1987), and Jacobi conjugate gradient (Berger et 

al., 1989) approaches. The current method of choice for solving mixed model equations with iteration-on-data is 

the preconditioned conjugate gradient (PCG), which was introduced in animal breeding by Berger et al. (1989) 

and implemented in several software packages (e.g., Strandén and Lidauer, 1999; Tsuruta et al., 2001). 

The growing volume of data utilized in genomic selection programs poses computational problems that 

are shared by functional genetics analyses. Genotypes for each individual require a large amount of storage, 

increasing as SNP chips increase in density, and will continue to grow as individual sequences become 

routinely affordable. Full sequence data are of great potential value because the accuracy of genomic 

evaluations will increase once causal mutations can be tracked, rather than markers in LD with those mutations. 

There also is growing interest in interactions among genes and regulatory networks that control gene expression 

(e.g., Fortes et al., 2011), which will benefit from higher-density marker panels. In order to realize that 

potential, however, the annotation of the bovine genome must continue to improve (Reese et al., 2010). 

Efficient methods to compute genomic predictions were described by VanRaden (2008), and current 

genomic evaluation systems involve several steps (VanRanden et al., 2009; Hayes et al., 2009; Harris and 

Johnson, 2010). State-of-the-art systems for dairy and beef cattle evaluations were discussed by Wiggans et al. 

 by George Wiggans on November 21, 2011jas.fass.orgDownloaded from 

http://jas.fass.org/


15 

(2011) and Garrick (2011), respectively. A single-step approach that is conceptually simpler in many respects 

has been proposed by Misztal et al. (2009). While genomic evaluation systems have been rapidly adopted, there 

are still a number of technical problems that need to be solved, such as correct adjustment for genomic pre-

selection of dairy sires (Patry and Ducrocq, 2011; Vitezica et al., 2011). 

In the single-step approach for the incorporation of genomic information in genetic evaluations, the 

inverse of the numerator relationship matrix (A) based only on pedigree information is replaced by the inverse 

of a combined relationship matrix (H) based on pedigree and genomic information (Legarra et al., 2009; Aguilar 

et al., 2010).  This resulted in a genetic evaluation with EBV predicted for genotyped and non-genotyped 

animals using all available information (Aguilar et al., 2010; Christensen and Lund, 2010).  

Implementation of the single-step method requires additional matrices, namely the inverse of the 

genomic relationship matrix and the inverse of the numerator relationship matrix for the subset of genotyped 

animals. Efficient methods for creation and inversion of such matrices were recently developed (Aguilar et al., 

2011a). For example, using a naïve algorithm for creating the genomic relationship matrix for 14,000 genotyped 

animals required almost one day, but using custom libraries and parallel computing, the time required was 

reduce to 15 min. 

Large-scale genetic evaluations with the single-step approach were run for either single trait (Aguilar et 

al., 2010) or multiple-trait analyses (Aguilar et al., 2011b; Tsuruta et al., 2011). Computing time for genetic 

evaluations using genomic information took twice as long as evaluations without genomic data (Tsuruta et al., 

2011), but could be reduced by 4 to 11% compared to regular genetic evaluations if custom libraries are used (I. 

Aguilar, I. Misztal, A. Legarra, and S. Tsuruta, unpublished data). 

Big Data in a Commercial Setting 

There are several challenges related to Big Data in a commercial setting, such as the Edinburgh Genetic 

Evaluation Services (EGENES; Midlothian, UK), which provides genetic evaluations for 1.85 million dairy 

cattle in the U.K., as well as web tools for breeding and farm management. In addition to traditional phenotypic 

and pedigree data, the EGENES database includes 11,500 50K genotypes, 600 800K genotypes, and will 
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include full-sequence data on 10 bulls. Imputation of genotypes on cows will further increase the size of the 

genomic dataset. The most notable challenges related to the implementation of genomic evaluations are storage 

costs and computing time. Storage is of great importance because data audits are necessary and processed data 

have to be retained, which requires not only disk capacity but a backup facility as well. Estimated breeding 

values have historically been computed and distributed according to fixed schedules, but there is growing 

demand for genomic estimated breeding values to be calculated on demand. 

While data files used as input to individual runs of a genetic evaluation system may easily be managed, 

that is not necessarily the case for the intermediate files generated by the evaluation system. However, those 

data also need to be retained so that audit trails can be constructed if there are questions about results. Files 

from multiple runs also are needed so that new results may be compared to older results to detect unexpected 

changes in evaluations. As storage requirements grow, backup times, restore times, media costs, and off-site 

storage fees increase. 

Computing requirements are increasing as customers demand more rapid service, such as more frequent 

conventional evaluations and on-demand calculation of genomic EBV from genotypes. In addition, marker 

effects estimates should be frequently updated to reflect new data. Such services require new software, faster 

hardware, high-capacity, and high-reliability network connections, and they typically involve increased costs 

for customer support. Consumers of the data often view them as a commodity rather than as premium items, and 

it can be difficult to recover the cost of development and implementation through increased fees. 

SUMMARY AND CONCLUSION 

Datasets are getting larger but we have many tools for working with them. To ensure that this remains 

the case, prototype software must be designed to consider scalability at the outset, which is often not done. 

Some computational resources, such as memory, disk space, and processing cycles, are relatively inexpensive. 

Programmer time is much more valuable, and speed should be measured as person-hours to solution rather than 

simply as data processing time. Programmer training programs need to look back 15 or 20 yr and rediscover 

strategies that focus on finesse rather than raw computational speed. Good code is good code irrespective of 
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computing power, and the last decade has seen the growth of profligate programming. Students often have 

never dealt with size constraints, which is important when working with large data. Software engineering has 

evolved into a mature discipline, and we need to re-learn and apply good developmental practices that consider 

scalability at the outset. Animal breeders should seek out more formal training in programming, rather than 

depending primarily on self-learning. 

As a community, consideration should be paid to the idea of best practices. Public and private 

organizations both can benefit from sharing experiences and discussing ideas for solving difficult problems. 

Reference datasets against which software may be tested could be developed and shared freely, an approach that 

has proven to be very useful in the U.S. dairy industry, and does not require the disclosure of any intellectual 

property or other sensitive information. This also may lead to the development of common formats for data 

exchange, such as those used by the participants in the International Bull Evaluation Service’s 

(http://www.interbull.org/) genetic evaluation programs. Ideally, the community should work towards more 

open sharing of materials, such as a requirement that genotypes generated by publicly-funded research be 

deposited in a repository that is freely accessible, a model successfully used by the U.S. National Institutes of 

Health (NIH, 2007). The need for such sharing may decrease somewhat when it becomes cheaper to resequence 

than to backup or transmit genotypic data. For old animals, there are limited quantities of DNA available, and it 

is unreasonable to demand that every scientific community expend often-scarce resources to recreate data that 

already exist. 

History indicates that we never have enough information; the more data we have, the more data we 

want. The ultimate value in Big Data lies in their ability to help answer questions, which may range from 

routine calculation of genomic estimated breeding values to predictions of regulatory networks, and there are 

always new questions. Relationships among traits are of increasing interest as we try to understand the biology 

that underlies complex phenotypes in livestock species, which will require ever-increasing computational 

resources. Customers demand rapid turnaround, often in real time, and smart engineering will be required to 

deliver such services cost-effectively. Ultimately, we hope that more really will be better. 
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Table 1. The number of records stored in the U.S. national dairy database
1
. 

Type of Record Number of Records
1 

Cow with lactation data 28,394,976 

Lactations 68,373,863 

Individual test days 508,574,732 

Dystocia records 20,770,758 

Animals in pedigree file 58,893,009 

Bull genotypes 50,393 

Cow genotypes 70,687 

1
Totals include animals of all breeds. 
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FIGURE CAPTIONS 

Figure 1.  This Manhattan plot showing the distribution of marker effects for lifetime net merit in U.S. Holstein 

(HO) cattle uses color to differentiate among markers on different chromosomes and marker size to emphasize 

the magnitude of marker effects.
  
Points indicating the magnitude of marker effects are proportional to the 

absolute value of the effect size. 

Figure 2.  This three-generation pedigree for the Holstein bull Co-Op O-Style Oman Just-ET (001HO09167) 

traces the inheritance of individual haplotypes for chromosome 15 from the great-grandparents. Segments of 

only 7 of 16 great-grandparental chromosomes are present in O-Style’s genome. 

Figure 3.  This line graph shows changes in average inbreeding (%) between 1990 and 2010 for U.S. Brown 

Swiss (solid, red line), Holstein (short-dashed, green line) and Jersey (long-dashed, blue line) cattle. Lines are 

differentiated from one another by two separate factors, pattern and color, minimizing the risk that readers will 

confuse one series with another.  Adapted from Cole and VanRaden (2011).  

Figure 4.  Sparklines are small graphics that may be used in text in a wordlike manner. This example uses 

sparklines to predict the outcome of a hypothetical mating of the Holstein bull Co-Op O-Style Oman Just-ET 

(001HO09167) and genotyped animal “Cow C”.  Used with permission from Cole and VanRaden (2010). 
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