
Proceedings, 10th World Congress of Genetics Applied to Livestock Production

Using the Whole Read: Structural Variant Detection Using NGS Data

D. M. Bickhart1, J. B. Cole1, J. L. Hutchison1, L. Xu2,3, G. E. Liu2.
1AIPL USDA-ARS, Beltsville, MD, 2BFGL USDA-ARS, Beltsville, MD, 3University of MD, College Park, MD

ABSTRACT: Several classes of Structural Variants (SV)
remain difficult to detect within sequenced genomes.
Deletions and tandem duplications may affect a large
proportion of variable genomic sequence space, yet their
detection is still difficult to discern from false positive
signals. Here, we present a method for detecting such
variants from short-read sequence data using the orientation
and distance of paired-end, and split-read mappings in
addition to using read-depth as a filtering agent. We test our
data using simulated SVs and find that our method is 27.5
times more precise than a competing detection program in
detecting tandem duplications. Our method is also able to
detect three times the number of deletions than a competing
algorithm. This high degree of precision should enable
better functional prediction of SVs from short-read
sequence data.
Keywords: variants; sequencing; software

Introduction
Structural variants (SV) present substantial

difficulties in the post-genome world. They have been
implicated as the causative agents of several phenotypes
such as color-sidedness in cattle (Durkin et al. (2012)) and
peacomb in chickens (Wright et al. (2009)); however, their
reliable detection requires cutting-edge computational
algorithms and extensive molecular validation. Even when
such variants are detected, interpretation of their real impact
on genome structure is difficult. Much of the difficulty in
interpretation is owed to the inexact nature of SV
breakpoint detection, which is defined as the exact base pair
coordinates where the SV differs from the reference
genome assembly. Many algorithms, such as read depth-
based CNV detection (Alkan et al. (2009)), attempt to
improve SV detection precision by lowering the resolution
of detection; however, this prevents reliable breakpoint
estimation.

Higher SV breakpoint detection has recently been
the subject of extensive research within the genomics
community. Much work has been done to utilize short-read
library construction techniques, such as paired-end read
libraries, to infer the exact breakpoints of SVs in the
genome (Korbel et al. (2009)). Additionally, algorithms
have been developed to identify SV breakpoints by splitting
reads into smaller constituents prior to realignment to the
reference genome (Ye et al. (2009)). Such techniques were
shown to contribute the highest quality SV predictions in
the recent human 1000 genomes project (Mills et al.
(2011)). Still, these methods carry the unfortunate side-
effects of having high false positive rates due to improper
interpretation of read chimeras that result from library
creation. We expand on these methods by combining their
predictions to generate highly confident SV calls which can
then be filtered for improved accuracy. Additionally, we

have designed our tool to be used on nearly all reference
assemblies by taking into account the uncertain nature of
gap regions in our runtime filters. We call our method
RPSR as it is a combination of read pair (RP) and split-read
(SR) methodologies.

Materials and Methods

Test dataset and discovery. Test data was
derived from simulated reads derived from cattle
chromosome 29. Fifty sets of simulated reads were
generated using wgsim (https://github.com/lh3/wgsim) on a
single cattle chromosome that had been modified with
deletions and tandem duplications by custom Perl scripts.
Wgsim was run with the INDEL rate set to 0% and all other
settings at the default. The equivalent of 10X coverage of
the genome was generated using wgsim with each
simulation. The average sizes of tandem duplications and
deletions were approximately 530 bp each, with a minimum
size of 55 bp and a maximum of 850 bp. RPSR was
implemented in the Java programming language version
1.7. A post-hoc filtering program was written in Perl v5.8.8.
All programs and analysis were run on a linux blade server
with 24 threads and 100 gigabytes of RAM.

Read alignment and pre-processing. The
detection of SVs from paired-end read alignments benefits
from the identification of all potential read pair alignment
locations and orientations. In order to identify these
locations, we used the MrsFAST short-read alignment tool
version 2.0.5.4 (Hach, et al. (2010)). MrsFAST identifies all
read alignment positions in the reference genome in a
cache-oblivious fashion (Hach, et al. (2010)). This has the
unintended side-effect of increasing alignment time and
alignment file size if repeats are not properly masked in the
reference genome, so we used RepeatMasker (Smit, et al.
(2008)) on the UMD3.1 cattle reference assembly (Zimin,
et al. (2009)) to mask highly repetitive sequence. Average
read alignment lengths (Arp) and alignment length standard
deviations (σrp) for each sequencing library were estimated
from the alignment of 100,000 sampled reads from that
library prior to the alignment of all data. After the
determination of Arp and σrp, all reads were aligned to the
reference genome using MrsFAST in single-end mode. We
then used a custom Java program to sort read alignments
and to attempt to pair reads. Pairs in which one read aligns
to the genome and the other does not – also termed one-end
anchors (OEA) -- were also saved for further analysis.

Paired-end discordancy analysis. We base much
of the core algorithm of our tool on the work of
Hormozdiari et al. (2009) in their program VariationHunter-
CR. Let Fl and Fr be the leftmost and rightmost mapping
coordinates of the first read, respectively, and Sl, Sr be the
mapping coordinates of the second read. The orientation of
the read is based on the 5’ to 3’ directionality of the read

compared to the reference genome, with a ‘+’ indicating the
same directionality and a ‘-‘ indicating reverse
directionality. Let us define the orientation of the read pair
as O, where O is comprised of the following set: {++, +-, -
+, --}. The definition of a read pair (P) would therefore
include information from all five points of data: P = {(Fl,
Fr), (Sl, Sr), O}. The insert length (L) of read pair P, would
be equivalent to the distance from the closest read
coordinate of the first read and the closest read coordinate
of the second read based on their orientation. Concordant
reads are reads that do not deviate significantly in insert
length (L) or default read orientation (+-) after alignment.
Discordant read pairs are defined as the set of P that has one
or more of the following characteristics:

1. L ≥ (Arp + 3σrp)
2. L ≤ (Arp - 3σrp)
3. O = (++ or --)
4. O = (-+)

 Read pairs that fall within criteria 1 and 2 are
indicative of deletions and insertions relative to the
reference assembly, respectively. Pairs that have a ++ or –
orientation as shown in criteria 3 indicate the edges of
inversions of sequence relative to the reference. Finally,
pairs with an “everted” orientation as in criteria 4 indicate
regions where there may be a tandem duplication. Please
see Figure 1 for examples of these criteria and their
implications on variant detection. Deviations in insert
length (criteria 1 and 2) can mix with abnormal read
orientation (criteria 3 and 4) to generate complex variants
such as inverted deletions as well. In order to identify
variants with confidence, we group discordant read pairs
with overlapping coordinates into sets (G). To avoid
creating chimeric sets derived from variants present on
different chromosomes in the diploid genome, we only
collect discordant read pairs that have overlapping read
alignment coordinates as shown in Figure 2.

Figure 1. Discordant read pair criteria for variant
discovery. Four criteria derived from read alignment
orientation (arrows) and size are used to identify putative
SVs. Read pair lengths that diverge from the average size
distributions in criteria (1) and (2) correspond to deletions
and insertions of sequence, respectively. When read pairs
show the same alignment orientation (3), they indicate the
ends of an inversion event in the genome (solid vertical
bars). Conversely, read pairs that show different, abnormal
orientations (4), indicate the breakpoints of a tandem
duplication (solid vertical bars).

Split-read creation and alignment. Discordant
read pairs in our dataset only provide approximate locations
for insertion and deletion events based on the criteria we
use for alignment. In order to refine our event detection and
to find the actual breakpoints of our variants, we
incorporate a method known as split-read analysis (Ye, et
al. (2009)). Split-read analysis breaks apart reads into
shorter fragments, then realigns the reads to identify the
breakpoints of sequence variants through discordant
mapping. This is, in principle, similar to the methods used
to identify discordant read pairs described above.
Performing split-read analysis on all reads present in a large
dataset is a computationally prohibitive action since it
effectively quadruples the amount of time dedicated to read
alignment. To reduce the complexity of the analysis, we
adopt a method pioneered by Karakoc et al. (2012) which
uses only OEA read pairs to pre-select reads for targeted
split-read analysis. Since the MrsFAST alignment tool does
not perform gapped alignment, OEA reads likely originate
from read pairs in which the unmapped read spans a
sequence variant.

Figure 2. Construction of sets of discordant reads that
predict the same SV. In order to differentiate between
false positive calls and true positive calls, reads pairs
(arrows connected by dotted lines) that support the same
variant call are clustered into sets (ellipses). Read pairs
must overlap by read fragment position coordinates
(vertical dotted lines) on both sides of the alignment to be
grouped into sets.

In order to perform the split-read analysis, we
divide the unmapped read into two separate half-reads (V1
and V2) of equal size and we align the half-reads to the
reference. The division point of the read (I) is one half of
the original read length in all cases. Half-read alignments
will fall into two categories based on the location of the
variant relative to the location where the half-reads were
split. The first category is a balanced (B) split read, where
both V1 and V2 align to the reference genome. The second
category consists of unbalanced (U) split-reads, where only
V1 or V2 aligns to the reference genome. Balanced split
reads indicate that the variant breakpoints exist right at the
division point of the read (I), whereas unbalanced reads
indicate that I did not span the exact variant breakpoints
(Figure 3). Sets of split reads (H) that predict the same
variant are created by grouping B and U reads that cover
the same exact breakpoint location. These sets are then
combined with prior discordant read sets (G) such that the
coordinates of the breakpoints predicted in H are internal to
the coordinates identified in each G. With the combination
of H and G sets (defined as HG), we have enough
information to generate our variant callset.

Weighted set cover and filtration. Because
MrsFAST alignment identifies all potential alignments for

read pairs, it is necessary to find the best, minimal set of
read alignments that detect variants. In order to accomplish
this, we use a modification of the set weight cover
algorithm that was used by Hormozdiari et al. (2009).
Given a collection of subsets of discordant read pairs and
split-reads, U = {HG1, HG2 … HGn}, the set weight cover
algorithm attempts to find the set that uses the most
uncovered elements in a greedy fashion at each iteration
(Vazirani (2001)). As such, the HG set that has the highest
count of uncovered discordant reads (G) and split-reads (H)
is chosen as the first set. In order to account for the bias that
may result from sets that derive from repetitive region
alignments, we do not use the number of uncovered
elements to prioritize set generation under the set weight
cover. Instead, we use Hormozdiari et al.’s (2009) phred-
based probability (PBP) estimate derived from the quality
scores of the read alignments to determine if read
alignments originate from alignment mismatches rather
than their real mapping locations. Given a series of k
mismatches, represented by the set MM = {n1, n2… nk }, in
a read, the PBP is determined from the following equation
(Hormozdiari et al. (2009)):

𝑃𝐵𝑃(𝑀𝑀) = �(
1

1000 + 10−
𝑝ℎ𝑟𝑒𝑑(𝑛𝑖)

10 −
1

1000 ∗ 10−
𝑝ℎ𝑟𝑒𝑑(𝑛𝑖)

10)
𝑖

If a read alignment has no mismatches, PBP = 1.

The sum of PBP estimates from uncovered discordant read
pairs and split-read pairs is used to select the first set in
each iteration of the set weight cover algorithm rather than
the raw count of associated read subsets. Unbalanced split
read PBPs are divided by 2 in order to account for the loss
of a balancing alignment in the probability estimate. After
grouping the reads into their appropriate sets, variants are
called.

Figure 3. Split read detection strategy. In order to reduce
the computational complexity of split read analysis, we split
read fragments in half and realign them to the genome. If
the variant site (vertical solid line) is positioned right at the
center of the read fragment, both split reads align to the
genome giving a “balanced” split read alignment (solid
arrows and solid bars). If the variant site is off-center, then
only one split read aligns, giving an “unbalanced”
alignment (solid and empty arrows and bars). Actual variant
breakpoints can then be inferred from balanced and
unbalanced read positions.

We incorporate four additional filters to reduce the
likelihood of false positive calls. First, we remove any sets
of HG that contain support only from unbalanced (U) split
reads. Such calls likely result from chimeric read fragments

or from alignments to repetitive regions of the genome.
Additionally, we remove any HG sets that have a
cumulative PBP of less than 3 or greater than 10 times the
predicted sequence coverage estimate for the library. Calls
that have fewer than three reads supporting them are
indistinguishable from chimeric read fragments generated
during sequencing library creation. Likewise, support from
over 10 times the predicted coverage estimate indicates
misalignment of a read to repetitive regions of the genome.
We also include a filter that removes discordant read pairs
that span gaps during the program runtime. Assembly gaps
often coincide with highly repetitive regions of the genome
that were difficult to resolve during reference genome
assembly. While discordant reads that span such gaps could
denote actual variants, the uncertainty of reference genome
structure in these regions makes such ascertainments
difficult. Finally, we use a sum total of aligned reads within
the discordant region to filter variants according to expected
read depth (RD) profiles. Depending on the variant type and
the precision of breakpoint estimates, we expect higher RD
values internal to insertions and tandem duplications and
lower RD values within predicted deletions. We take the
average of read counts per base pair within 100 bases
outside of the variant region and internal to the variant
region on both sides of the prediction and filter variants that
do not have a greater than 75% change in RD profile.

Results and Discussion

Performance and runtime statistics. In order to
take advantage of multiple core systems, reads originating
from different chromosomes are processed on different
threads. The average runtime for a 50 megabase (Mb)
chromosome with 10 X coverage was approximately 5
minutes on a single thread. Memory usage was
approximately 5 gigabytes on average per thread; however,
the memory management model of the Java language often
defers garbage collection to improve runtime performance,
so it is likely that this memory usage estimate is inflated by
deferred collection of dereferenced classes
(www.oracle.com/technetwork/java/index-138747.html).
Memory usage increases with the number of discordant and
unmapped reads in the dataset, with each new discordant
read pair occupying > 104 bytes and each pair of split reads
occupying > 132 bytes of memory. Improvements to
program structure could reduce the total memory footprint
of these classes of reads. Additionally, a limit to the number
of supporting discordant reads that are stored in each set
could allow analysis of higher coverage data without
extensive memory consumption. The runtime of the
program should theoretically scale well with additional
processor cores given sufficient memory overhead.

Simulations and comparison with existing tools.
In order to gauge the predictive power of our method, we
created simulations of the smallest cattle autosome
(chromosome 29) with randomly distributed, artificial SVs.
SV types were limited to deletions and tandem duplications
so as to provide direct comparisons to the predictive power
of the Delly SV detection suite version 0.0.9 (Rausch, et al.
(2012)). Simulations were repeated 50 times, with an
average of 24 SVs (12.29 deletions and 11.83 tandem
duplications) per dataset. Reads were aligned with BWA

version 0.6.2-r126 for Delly/Duppy detection and
MrsFAST for RPSR. Delly and Duppy were run with
default settings, and RPSR output was filtered using two
types of progressive filters. The first RPSR filter, called the
“P” filter, simply removes calls that have a cumulative PBP
score of 3 or less, or over 10 times the expected coverage of
the library. The last RPSR filter, or the “RD” filter, checks
the read depth profile near the breakpoints of the variant
call to see if a change in read depth accompanies the
variant. If the RD profile does not show substantial
changes, the variant is filtered. Given that the simulation
tracks the locations of randomly generated SVs, we were
able to estimate average precision and recall values for each
method (Table 1).

Table 1. Average recall and precision of RPSR and
Delly/Duppy on 50 simulated autosomes with structural
variants

Program TP Calls Precis Recall
DELLY_DELS 0.979 95.813 0.009 0.083
DUPPY_TAND 6.625 366.375 0.018 0.571
RPSR_TAND 5.750 51.354 0.106 0.503
RPSR_DELS 3.083 303.375 0.010 0.245
RPSR_P_DELS 0.125 128.688 0.001 0.010
RPSR_P_TAND 5.438 11.250 0.495 0.491
RPSR_RD_DELS 2.625 16.708 0.245 0.209
RPSR_RD_TAND 2.833 6.479 0.415 0.237
RPSR_PRD_TAND 1.229 1.458 0.653 0.102
RPSR_PRD_DELS 0.083 4.854 0.046 0.007

All numbers are averages from 50 simulations. Simulations
had an average of 12.3 deletions (DELS) and 11.8 tandem
duplications (TAND). Precision (Precis) is defined as the
count of true positives (TP) divided by the total number of
calls by the program (Calls). Recall is defined as the
number of TPs divided by the known number of positives
(12.3 or 11.8 for DELS and TAND, respectively). RPSR
variants were subjected to two different types of filters (“P”
and “RD”) in an alternating and combined (“PRD”)
fashion.

We found that RPSR has better predictive power

than Delly and Duppy in our simulation dataset. Unfiltered
RPSR deletion calls show an improved recall (24.5%) rate
when compared to Delly deletion calls (0.08%). Duppy
shows a slight advantage in terms of recall rate (57.1%) for
tandem duplications compared to our unfiltered RPSR
tandem duplication calls (50.2%); however, the precision of
our method (10.5%) is greater than that of the Duppy
method (0.02%). Post-hoc filters showed a significant
improvement in the precision of our datasets without a
substantial loss in recall rate. Based on our simulation, the
simple P filter provided the best precision and recall for the
RPSR tandem duplication algorithm with 49.5% precision
and 49.1% recall. By contrast, the RD filter seemed to
provide the best return for the RPSR deletion algorithm
with a 24.5% precision and 20.9% recall. Since the
deletions that were simulated in our method were the

equivalent of homozygous deletions, this may be the
primary reason why the RD filter served as the best setting
for the deletion detection algorithm.

Several key differences in algorithms contribute to
the substantial variation in precision and recall between
Delly/Duppy and RPSR. The first, and perhaps foremost,
difference is in the alignment stage. BWA provides a “best
hit” alignment that does not consider all possible read
mapping locations. While this method works very well at
reducing the number of potential discordant reads to
analyze, it unfortunately discards true positive discordant
reads that map in multiple locations in the genome.
MrsFAST, by contrast, outputs all discordant read
locations, thereby allowing the RPSR algorithm the liberty
of clustering read pairs into predicted SVs. Another key
difference between algorithms is how split-reads are
prepared and used. Delly reduces the complexity of split-
read analysis by searching for OEAs within SV intervals
predicted by discordant paired end reads. While this is a
useful strategy for breakpoint detection, there is the
potential for Delly to miss SVs that only have evidence
from split-reads. RPSR calculates split-read estimates
separately from discordant reads, thereby identifying SVs
that only have such information.

Future Directions. While RPSR shows substantial
improvements in SV detection over a similar competitor,
improvements to runtime performance and a reduction in
generated meta-data are future goals for the program’s
development. Additionally, we plan on adding larger scale
SV detection features in the near future. The set weight
cover algorithm should be suitable to cluster additional SV
events such as trans-chromosomal and inter-chromosomal
translocation. Finally, the post-hoc filters will be
incorporated into the runtime component of the algorithm to
improve detection specificity.

Conclusion

We present the RPSR program which implements
a combined SV detection algorithm that uses discordant
read pairs, split-reads and read depth to identify moderate
size insertions, deletions and tandem duplications within
paired-end sequence data. RPSR runs efficiently on
multiple-core systems and it makes use of several cutting-
edge techniques to reduce the computational complexity of
split-read analysis. We have shown that RPSR outperforms
a similar program in simulations, with an increased
precision and recall after post-hoc filtration. We plan to
release RPSR as an open-source software package for use
on the command line for Windows and Unix-based
systems.

Literature Cited

Alkan, C., Kidd, J. M., Eichler, E. E., et al. (2009). Nature
Genetics. Aug 30. 41 1061- 1067.

Durkin, K., Coppierers, W., Charlier, C., et al. (2012).
Nature. Feb 1;482(7383):81-84.

Hach, F., Hormozdiari, F., Alkan, C., et al. (2010). Nat
Methods. Aug;7(8):576-577.

Hormozdiari, F., Alkan, C., Eichler, E. E., et al. (2009).
Genome Res. 19:1270-1278.

Karakoc, E., Alkan, C., O’Roak, B.J., et al. (2011). Nat
Methods. Dec 18;9(2):176-178.

Korbel, J. O., Abyzov, A., Gerstein, M. B., et al. (2009).
Genome Biol. Feb 23. 10:R23.

Mills, R. E., Walter, K., 1000 Genomes Project, et al.
(2011). Nature. Feb 3;470(7332):59-65.

Rausch, T., Zichner, T., Schlattl, A., et al. (2012).
Bioinformatics. Sep 15;28(18):i333-i339.

Smit, A.F.A., Hubley, R., (2008) RepeatMasker Open-3.0.
www.repeatmasker.org.

Vazirani, V. V. (2001). Approximation Algorithms.
Springer.

Wright, D., Boije, H., Andersson, L., et al. (2009). PLoS
Genet. Jun;5(6).

Ye, K., Shulz, M. H., Long, Q., et al. (2009).
Bioinformatics. Jun 26. 25;21:2865-2871.

Zimin, A. V., Delcher, A. L., Salzberg, S. L., et al. (2009).
Genome Biol. 10(4):R42.

