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ABSTRACT: Several classes of Structural Variants (SV) 
remain difficult to detect within sequenced genomes. 
Deletions and tandem duplications may affect a large 
proportion of variable genomic sequence space, yet their 
detection is still difficult to discern from false positive 
signals. Here, we present a method for detecting such 
variants from short-read sequence data using the orientation 
and distance of paired-end, and split-read mappings in 
addition to using read-depth as a filtering agent. We test our 
data using simulated SVs and find that our method is 27.5 
times more precise than a competing detection program in 
detecting tandem duplications. Our method is also able to 
detect three times the number of deletions than a competing 
algorithm. This high degree of precision should enable 
better functional prediction of SVs from short-read 
sequence data. 
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Introduction 
Structural variants (SV) present substantial 

difficulties in the post-genome world. They have been 
implicated as the causative agents of several phenotypes 
such as color-sidedness in cattle (Durkin et al. (2012)) and 
peacomb in chickens (Wright et al. (2009)); however, their 
reliable detection requires cutting-edge computational 
algorithms and extensive molecular validation. Even when 
such variants are detected, interpretation of their real impact 
on genome structure is difficult. Much of the difficulty in 
interpretation is owed to the inexact nature of SV 
breakpoint detection, which is defined as the exact base pair 
coordinates where the SV differs from the reference 
genome assembly. Many algorithms, such as read depth-
based CNV detection (Alkan et al. (2009)), attempt to 
improve SV detection precision by lowering the resolution 
of detection; however, this prevents reliable breakpoint 
estimation.    

Higher SV breakpoint detection has recently been 
the subject of extensive research within the genomics 
community. Much work has been done to utilize short-read 
library construction techniques, such as paired-end read 
libraries, to infer the exact breakpoints of SVs in the 
genome (Korbel et al. (2009)). Additionally, algorithms 
have been developed to identify SV breakpoints by splitting 
reads into smaller constituents prior to realignment to the 
reference genome (Ye et al. (2009)). Such techniques were 
shown to contribute the highest quality SV predictions in 
the recent human 1000 genomes project (Mills et al. 
(2011)). Still, these methods carry the unfortunate side-
effects of having high false positive rates due to improper 
interpretation of read chimeras that result from library 
creation. We expand on these methods by combining their 
predictions to generate highly confident SV calls which can 
then be filtered for improved accuracy. Additionally, we 

have designed our tool to be used on nearly all reference 
assemblies by taking into account the uncertain nature of 
gap regions in our runtime filters. We call our method 
RPSR as it is a combination of read pair (RP) and split-read 
(SR) methodologies. 

 
Materials and Methods 

Test dataset and discovery.  Test data was 
derived from simulated reads derived from cattle 
chromosome 29. Fifty sets of simulated reads were 
generated using wgsim (https://github.com/lh3/wgsim) on a 
single cattle chromosome that had been modified with 
deletions and tandem duplications by custom Perl scripts. 
Wgsim was run with the INDEL rate set to 0% and all other 
settings at the default. The equivalent of 10X coverage of 
the genome was generated using wgsim with each 
simulation. The average sizes of tandem duplications and 
deletions were approximately 530 bp each, with a minimum 
size of 55 bp and a maximum of 850 bp. RPSR was 
implemented in the Java programming language version 
1.7. A post-hoc filtering program was written in Perl v5.8.8. 
All programs and analysis were run on a linux blade server 
with 24 threads and 100 gigabytes of RAM.   

Read alignment and pre-processing. The 
detection of SVs from paired-end read alignments benefits 
from the identification of all potential read pair alignment 
locations and orientations. In order to identify these 
locations, we used the MrsFAST short-read alignment tool 
version 2.0.5.4 (Hach, et al. (2010)). MrsFAST identifies all 
read alignment positions in the reference genome in a 
cache-oblivious fashion (Hach, et al. (2010)). This has the 
unintended side-effect of increasing alignment time and 
alignment file size if repeats are not properly masked in the 
reference genome, so we used RepeatMasker (Smit, et al. 
(2008)) on the UMD3.1 cattle reference assembly (Zimin, 
et al. (2009)) to mask highly repetitive sequence. Average 
read alignment lengths (Arp) and alignment length standard 
deviations (σrp) for each sequencing library were estimated 
from the alignment of 100,000 sampled reads from that 
library prior to the alignment of all data. After the 
determination of Arp and σrp, all reads were aligned to the 
reference genome using MrsFAST in single-end mode. We 
then used a custom Java program to sort read alignments 
and to attempt to pair reads. Pairs in which one read aligns 
to the genome and the other does not – also termed one-end 
anchors (OEA) -- were also saved for further analysis. 

Paired-end discordancy analysis. We base much 
of the core algorithm of our tool on the work of 
Hormozdiari et al. (2009) in their program VariationHunter-
CR. Let Fl and Fr be the leftmost and rightmost mapping 
coordinates of the first read, respectively, and Sl, Sr be the 
mapping coordinates of the second read. The orientation of 
the read is based on the 5’ to 3’ directionality of the read 



compared to the reference genome, with a ‘+’ indicating the 
same directionality and a ‘-‘ indicating reverse 
directionality. Let us define the orientation of the read pair 
as O, where O is comprised of the following set: {++, +-, -
+, --}. The definition of a read pair (P) would therefore 
include information from all five points of data: P = {(Fl, 
Fr), (Sl, Sr), O}. The insert length (L) of read pair P, would 
be equivalent to the distance from the closest read 
coordinate of the first read and the closest read coordinate 
of the second read based on their orientation. Concordant 
reads are reads that do not deviate significantly in insert 
length (L) or default read orientation (+-) after alignment. 
Discordant read pairs are defined as the set of P that has one 
or more of the following characteristics:  

 
1. L ≥ (Arp + 3σrp) 
2. L ≤ (Arp - 3σrp) 
3. O = (++ or --) 
4. O = (-+) 

  
 Read pairs that fall within criteria 1 and 2 are 
indicative of deletions and insertions relative to the 
reference assembly, respectively. Pairs that have a ++ or – 
orientation as shown in criteria 3 indicate the edges of 
inversions of sequence relative to the reference. Finally, 
pairs with an “everted” orientation as in criteria 4 indicate 
regions where there may be a tandem duplication. Please 
see Figure 1 for examples of these criteria and their 
implications on variant detection. Deviations in insert 
length (criteria 1 and 2) can mix with abnormal read 
orientation (criteria 3 and 4) to generate complex variants 
such as inverted deletions as well. In order to identify 
variants with confidence, we group discordant read pairs 
with overlapping coordinates into sets (G). To avoid 
creating chimeric sets derived from variants present on 
different chromosomes in the diploid genome, we only 
collect discordant read pairs that have overlapping read 
alignment coordinates as shown in Figure 2.   
 
 
 

 
Figure 1. Discordant read pair criteria for variant 
discovery. Four criteria derived from read alignment 
orientation (arrows) and size are used to identify putative 
SVs. Read pair lengths that diverge from the average size 
distributions in criteria (1) and (2) correspond to deletions 
and insertions of sequence, respectively. When read pairs 
show the same alignment orientation (3), they indicate the 
ends of an inversion event in the genome (solid vertical 
bars). Conversely, read pairs that show different, abnormal 
orientations (4), indicate the breakpoints of a tandem 
duplication (solid vertical bars). 

Split-read creation and alignment. Discordant 
read pairs in our dataset only provide approximate locations 
for insertion and deletion events based on the criteria we 
use for alignment. In order to refine our event detection and 
to find the actual breakpoints of our variants, we 
incorporate a method known as split-read analysis (Ye, et 
al. (2009)). Split-read analysis breaks apart reads into 
shorter fragments, then realigns the reads to identify the 
breakpoints of sequence variants through discordant 
mapping. This is, in principle, similar to the methods used 
to identify discordant read pairs described above. 
Performing split-read analysis on all reads present in a large 
dataset is a computationally prohibitive action since it 
effectively quadruples the amount of time dedicated to read 
alignment. To reduce the complexity of the analysis, we 
adopt a method pioneered by Karakoc et al. (2012) which 
uses only OEA read pairs to pre-select reads for targeted 
split-read analysis. Since the MrsFAST alignment tool does 
not perform gapped alignment, OEA reads likely originate 
from read pairs in which the unmapped read spans a 
sequence variant.  
 

 
Figure 2. Construction of sets of discordant reads that 
predict the same SV. In order to differentiate between 
false positive calls and true positive calls, reads pairs 
(arrows connected by dotted lines) that support the same 
variant call are clustered into sets (ellipses). Read pairs 
must overlap by read fragment position coordinates 
(vertical dotted lines) on both sides of the alignment to be 
grouped into sets. 
 

In order to perform the split-read analysis, we 
divide the unmapped read into two separate half-reads (V1 
and V2) of equal size and we align the half-reads to the 
reference. The division point of the read (I) is one half of 
the original read length in all cases. Half-read alignments 
will fall into two categories based on the location of the 
variant relative to the location where the half-reads were 
split. The first category is a balanced (B) split read, where 
both V1 and V2 align to the reference genome. The second 
category consists of unbalanced (U) split-reads, where only 
V1 or V2 aligns to the reference genome. Balanced split 
reads indicate that the variant breakpoints exist right at the 
division point of the read (I), whereas unbalanced reads 
indicate that I did not span the exact variant breakpoints 
(Figure 3). Sets of split reads (H) that predict the same 
variant are created by grouping B and U reads that cover 
the same exact breakpoint location. These sets are then 
combined with prior discordant read sets (G) such that the 
coordinates of the breakpoints predicted in H are internal to 
the coordinates identified in each G. With the combination 
of H and G sets (defined as HG), we have enough 
information to generate our variant callset. 

Weighted set cover and filtration. Because 
MrsFAST alignment identifies all potential alignments for 



read pairs, it is necessary to find the best, minimal set of 
read alignments that detect variants. In order to accomplish 
this, we use a modification of the set weight cover 
algorithm that was used by Hormozdiari et al. (2009). 
Given a collection of subsets of discordant read pairs and 
split-reads, U = {HG1, HG2 … HGn}, the set weight cover 
algorithm attempts to find the set that uses the most 
uncovered elements in a greedy fashion at each iteration 
(Vazirani (2001)). As such, the HG set that has the highest 
count of uncovered discordant reads (G) and split-reads (H) 
is chosen as the first set. In order to account for the bias that 
may result from sets that derive from repetitive region 
alignments, we do not use the number of uncovered 
elements to prioritize set generation under the set weight 
cover. Instead, we use Hormozdiari et al.’s (2009) phred-
based probability (PBP) estimate derived from the quality 
scores of the read alignments to determine if read 
alignments originate from alignment mismatches rather 
than their real mapping locations. Given a series of k 
mismatches, represented by the set MM = {n1, n2… nk }, in 
a read, the PBP is determined from the following equation 
(Hormozdiari et al. (2009)): 
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If a read alignment has no mismatches, PBP = 1. 

The sum of PBP estimates from uncovered discordant read 
pairs and split-read pairs is used to select the first set in 
each iteration of the set weight cover algorithm rather than 
the raw count of associated read subsets. Unbalanced split 
read PBPs are divided by 2 in order to account for the loss 
of a balancing alignment in the probability estimate. After 
grouping the reads into their appropriate sets, variants are 
called. 
 

 
Figure 3. Split read detection strategy. In order to reduce 
the computational complexity of split read analysis, we split 
read fragments in half and realign them to the genome. If 
the variant site (vertical solid line) is positioned right at the 
center of the read fragment, both split reads align to the 
genome giving a “balanced” split read alignment (solid 
arrows and solid bars). If the variant site is off-center, then 
only one split read aligns, giving an “unbalanced” 
alignment (solid and empty arrows and bars). Actual variant 
breakpoints can then be inferred from balanced and 
unbalanced read positions. 
 

We incorporate four additional filters to reduce the 
likelihood of false positive calls. First, we remove any sets 
of HG that contain support only from unbalanced (U) split 
reads. Such calls likely result from chimeric read fragments 

or from alignments to repetitive regions of the genome. 
Additionally, we remove any HG sets that have a 
cumulative PBP of less than 3 or greater than 10 times the 
predicted sequence coverage estimate for the library. Calls 
that have fewer than three reads supporting them are 
indistinguishable from chimeric read fragments generated 
during sequencing library creation. Likewise, support from 
over 10 times the predicted coverage estimate indicates 
misalignment of a read to repetitive regions of the genome. 
We also include a filter that removes discordant read pairs 
that span gaps during the program runtime. Assembly gaps 
often coincide with highly repetitive regions of the genome 
that were difficult to resolve during reference genome 
assembly. While discordant reads that span such gaps could 
denote actual variants, the uncertainty of reference genome 
structure in these regions makes such ascertainments 
difficult. Finally, we use a sum total of aligned reads within 
the discordant region to filter variants according to expected 
read depth (RD) profiles. Depending on the variant type and 
the precision of breakpoint estimates, we expect higher RD 
values internal to insertions and tandem duplications and 
lower RD values within predicted deletions. We take the 
average of read counts per base pair within 100 bases 
outside of the variant region and internal to the variant 
region on both sides of the prediction and filter variants that 
do not have a greater than 75% change in RD profile.  

 
Results and Discussion 

Performance and runtime statistics. In order to 
take advantage of multiple core systems, reads originating 
from different chromosomes are processed on different 
threads. The average runtime for a 50 megabase (Mb) 
chromosome with 10 X coverage was approximately 5 
minutes on a single thread. Memory usage was 
approximately 5 gigabytes on average per thread; however, 
the memory management model of the Java language often 
defers garbage collection to improve runtime performance, 
so it is likely that this memory usage estimate is inflated by 
deferred collection of dereferenced classes 
(www.oracle.com/technetwork/java/index-138747.html). 
Memory usage increases with the number of discordant and 
unmapped reads in the dataset, with each new discordant 
read pair occupying > 104 bytes and each pair of split reads 
occupying > 132 bytes of memory. Improvements to 
program structure could reduce the total memory footprint 
of these classes of reads. Additionally, a limit to the number 
of supporting discordant reads that are stored in each set 
could allow analysis of higher coverage data without 
extensive memory consumption. The runtime of the 
program should theoretically scale well with additional 
processor cores given sufficient memory overhead. 

Simulations and comparison with existing tools. 
In order to gauge the predictive power of our method, we 
created simulations of the smallest cattle autosome 
(chromosome 29) with randomly distributed, artificial SVs. 
SV types were limited to deletions and tandem duplications 
so as to provide direct comparisons to the predictive power 
of the Delly SV detection suite version 0.0.9 (Rausch, et al. 
(2012)). Simulations were repeated 50 times, with an 
average of 24 SVs (12.29 deletions and 11.83 tandem 
duplications) per dataset. Reads were aligned with BWA 



version 0.6.2-r126 for Delly/Duppy detection and 
MrsFAST for RPSR. Delly and Duppy were run with 
default settings, and RPSR output was filtered using  two 
types of progressive filters. The first RPSR filter, called the 
“P” filter, simply removes calls that have a cumulative PBP 
score of 3 or less, or over 10 times the expected coverage of 
the library. The last RPSR filter, or the “RD” filter, checks 
the read depth profile near the breakpoints of the variant 
call to see if a change in read depth accompanies the 
variant. If the RD profile does not show substantial 
changes, the variant is filtered. Given that the simulation 
tracks the locations of randomly generated SVs, we were 
able to estimate average precision and recall values for each 
method (Table 1).  
 
Table 1. Average recall and precision of RPSR and 
Delly/Duppy on 50 simulated autosomes with structural 
variants 

Program TP Calls Precis Recall 
DELLY_DELS 0.979 95.813 0.009 0.083 
DUPPY_TAND 6.625 366.375 0.018 0.571 
RPSR_TAND 5.750 51.354 0.106 0.503 
RPSR_DELS 3.083 303.375 0.010 0.245 
RPSR_P_DELS 0.125 128.688 0.001 0.010 
RPSR_P_TAND 5.438 11.250 0.495 0.491 
RPSR_RD_DELS 2.625 16.708 0.245 0.209 
RPSR_RD_TAND 2.833 6.479 0.415 0.237 
RPSR_PRD_TAND 1.229 1.458 0.653 0.102 
RPSR_PRD_DELS 0.083 4.854 0.046 0.007 

All numbers are averages from 50 simulations. Simulations 
had an average of 12.3 deletions (DELS) and 11.8 tandem 
duplications (TAND). Precision (Precis) is defined as the 
count of true positives (TP) divided by the total number of 
calls by the program (Calls). Recall is defined as the 
number of TPs divided by the known number of positives 
(12.3 or 11.8 for DELS and TAND, respectively). RPSR 
variants were subjected to two different types of filters (“P” 
and “RD”) in an alternating and combined (“PRD”) 
fashion. 

 
We found that RPSR has better predictive power 

than Delly and Duppy in our simulation dataset. Unfiltered 
RPSR deletion calls show an improved recall (24.5%) rate 
when compared to Delly deletion calls (0.08%). Duppy 
shows a slight advantage in terms of recall rate (57.1%) for 
tandem duplications compared to our unfiltered RPSR 
tandem duplication calls (50.2%); however, the precision of 
our method (10.5%) is greater than that of the Duppy 
method (0.02%). Post-hoc filters showed a significant 
improvement in the precision of our datasets without a 
substantial loss in recall rate. Based on our simulation, the 
simple P filter provided the best precision and recall for the 
RPSR tandem duplication algorithm with 49.5% precision 
and 49.1% recall. By contrast, the RD filter seemed to 
provide the best return for the RPSR deletion algorithm 
with a 24.5% precision and 20.9% recall. Since the 
deletions that were simulated in our method were the 

equivalent of homozygous deletions, this may be the 
primary reason why the RD filter served as the best setting 
for the deletion detection algorithm.   

Several key differences in algorithms contribute to 
the substantial variation in precision and recall between 
Delly/Duppy and RPSR. The first, and perhaps foremost, 
difference is in the alignment stage. BWA provides a “best 
hit” alignment that does not consider all possible read 
mapping locations. While this method works very well at 
reducing the number of potential discordant reads to 
analyze, it unfortunately discards true positive discordant 
reads that map in multiple locations in the genome. 
MrsFAST, by contrast, outputs all discordant read 
locations, thereby allowing the RPSR algorithm the liberty 
of clustering read pairs into predicted SVs. Another key 
difference between algorithms is how split-reads are 
prepared and used. Delly reduces the complexity of split-
read analysis by searching for OEAs within SV intervals 
predicted by discordant paired end reads. While this is a 
useful strategy for breakpoint detection, there is the 
potential for Delly to miss SVs that only have evidence 
from split-reads. RPSR calculates split-read estimates 
separately from discordant reads, thereby identifying SVs 
that only have such information. 

Future Directions. While RPSR shows substantial 
improvements in SV detection over a similar competitor, 
improvements to runtime performance and a reduction in 
generated meta-data are future goals for the program’s 
development.  Additionally, we plan on adding larger scale 
SV detection features in the near future. The set weight 
cover algorithm should be suitable to cluster additional SV 
events such as trans-chromosomal and inter-chromosomal 
translocation. Finally, the post-hoc filters will be 
incorporated into the runtime component of the algorithm to 
improve detection specificity. 

 
Conclusion 

We present the RPSR program which implements 
a combined SV detection algorithm that uses discordant 
read pairs, split-reads and read depth to identify moderate 
size insertions, deletions and tandem duplications within 
paired-end sequence data. RPSR runs efficiently on 
multiple-core systems and it makes use of several cutting-
edge techniques to reduce the computational complexity of 
split-read analysis. We have shown that RPSR outperforms 
a similar program in simulations, with an increased 
precision and recall after post-hoc filtration. We plan to 
release RPSR as an open-source software package for use 
on the command line for Windows and Unix-based 
systems.  
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