Consideration of Sire Relationships for Estimation
of Variance Components with Interaction of Herd and Sire!

ABSTRACT

Effects of sire relationships for sire
and interaction of herd and sire were
examined using simulation and mini-
mum variance quadratic unbiased esti-
mates of variance components. Data
were simulated for 50 herds and 20 sires
for five sire relationship matrices, three
data structures, and three interaction lev-
els. A total of 1000 replicates were simu-
lated for each combination of relation-
ship matrix, data structure, and
interaction level. The minimum variance
quadratic unbiased estimates were calcu-
lated for the true (simulation) model, for
models ignoring relationships for sires
and interaction, and for models exclud-
ing interaction of herd and sire. Interac-
tion variance was underestimated when
relationships were ignored. Underestima-
tion increased with sire relatedness. Sire
variance and heritability estimates in-
creased when variance components were
estimated using sire models compared
with estimates using interaction models.
This overestimation increased with inter-
action level simulated in the data and as
the data were more unbalanced. Esti-
mates of sire variance were as much as
2.7 times larger than that expected, and
heritability estimates were as much as
2.8 times larger than that expected.
(Key words: sire relationships, variance
components, interaction of herd and sire)

Abbreviation key: G X E = interaction of
genotype and environment, H X S = interaction
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of herd and sire, MIVQUE = minimum vari-
ance quadratic unbiased estimator, and MME
= mixed model equations.

INTRODUCTION

Genetic effects are assumed to behave con-
sistently across treatments, herd levels, or
other environmental factors in most animal
breeding models. When this assumption is vio-
lated, an interaction of genotype and environ-
ment (G x E) exists, and appropriate analysis
is more complex. Studies of the correlation of
breeding values estimated from multiple en-
vironments (i.e., herds, regions, or countries)
(1, 11, 16, 19, 24) have found little evidence of
G x E for milk yield in dairy cattle. Variance
for interaction of herd and sire (H x S), usually
estimated using Henderson’s (5) method 1 or
method 3, ranged from .2 to 10% of total
variance (9, 10, 13, 23). For British Friesians,
Meyer (12) used REML to estimate environ-
mental correlations, which ranged from 2.1 to
4.2% of the total phenotypic variance, and
concluded that environmental correlation was
important for sire evaluations based on obser-
vations from only a few herds.

The effect of individual herds has become a
concern for animal breeding because of the
potential for preferential treatment of animals
in a small number of herds affecting sire
evaluations. If G X E is included in a statistical
model, the influence of observations from any
single environment on genetic prediction is
limited, and the range of predictors is reduced
(14). Although the influence of a single en-
vironment is limited by the addition of G X E
to an evaluation, this addition should not
greatly affect animals represented in many en-
vironments, such as Al sires. Despite noting
that true H X S was not likely to be a concern,
Norman (15) recommended inclusion of H x S
in the form of an environmental correlation to
limit the effect of preferential treatment.

313



314

Foulley and Henderson (4) modified the
multiple-trait model suggested by Quaas and
Pollak (17) to allow for the use of known
relationships to predict H x S effects and, more
importantly, to estimate H X S variance com-
ponents. Inclusion of these relationships is
computationally more difficuit. However, H x
S effects for related sires may be correlated
because the interaction might be a function of
the genetic component shared by relatives.

The purpose of this study was to examine
the effects of ignoring H x S and ignoring sire
relationships on estimation of variance compo-
nents when interaction was present in the data.
Simulation was used to examine the effects of
interaction, relationship, and data structure on
biases in estimates of variance components.

MATERIALS AND METHODS

Simulation

A total of 1000 replicates of each combina-
tion of three data structures, five relationship
matrices, and three interaction levels were
generated using simulation.

Data Structures. The term data structure is
used to describe a distribution of observations
with respect to sires and herds that is repeat-
edly used to simulate data with a variety of
underlying parameters (i.c., a data structure
defines the incidence of the data but not the
actual observations). For this study, three data
structures were used, each of which had 20
sires with daughters in 50 herds. The data
structures differed in the fraction of herd-sire
subclasses filled. Data structure 1 represented
nearly balanced data; all sires had daughters in
all herds, and the number of daughters was
nearly constant. For the second data structure,
25% of herd-sire subclasses were filled, cor-
responding to moderately unbalanced data. For
the last data structure, only 10% of the herd-
sire subclasses were filled, as an example of
severely unbalance data. The expected number
of observations totaled 2000 for all three struc-
tures. Simulation parameters and observed
values are presented in Table 1.

Connected data, as described by Searle (21),
was ensured by the use of an algorithm
described by Fernando et al. (3) because dis-
connected data may influence estimation of
variance components (20). If the data were
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TABLE 1. Simulation parameters and observed values for
generating data structures, including proportion of filled
subclasses (P), mean daughters per filled subclass (M), and
the total number of observations (n).

Data structure P M n

1 Simulated! 1.00 2.00 2000
Observed? 1.00 2.02 2015

2 Simulated 25 8.00 2000
QObserved 26 7.64 1994

3  Simulated .10 20.00 2000
Observed 12 20.70 2401

!Parameters used to generate data structure.
20bserved from data generated.

disconnected, a new data structure was gener-
ated and tested to ensure connected data. This
procedure was repeated until a completely con-
nected data structure was generated.

Sire Relationships. Five sire relationship
matrices were used to simulate records for
daughters of bulls. The first three relationship
structures were for differently sized half-sib
sire groups. Let H;, be defined as %I, + 4J,,
where I is an n X n identity matrix, and J,, is
an n X n matrix with all elements equal to 1.
The first relationship matrix was for 10 pairs
of half-sib sires; then A; = Ijo ® Hy, where ®
denotes the direct or Kronecker product [see
Searle (22) for discussion of the direct product
operator]. The second set of relationships was
for four sets of five half-sib sire groups, or A;
= I4 ® Hs. The last structured relationship
matrix was for 20 half-sib sires, i.e., A3 = Hyq.

The last two relationship matrices were
generated from data representative of the cur-
rent population of Al sires in the US. The
inverse of Wright’s numerator relationship ma-
trix for 334 sires was obtained from the data
used for the national calving ease evaluation.
This matrix was inverted to obtain the numera-
tor relationship matrix. The fourth relationship
structure was generated by random selection of
20 sires from 100 young sires in the list of
334. None of the 100 sires had sons or grand-
sons in the data, so those sires were representa-
tive of the degree of relatedness among young
sires that were progeny tested by Al organiza-
tions. The fifth relationship matrix was created
by randomly choosing 20 sires from all of the
334 sires in the data.
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Because Wright's numerator relationship
matrix is positive definite (7), it can be factored
using a Cholesky decomposition so that

A; = LL.

171?

i=1,2,...,5, [1]

where L; is a lower triangular matrix. Each
relationship matrix was decomposed using the
Cholesky decomposition algorithm described
by Burden et al. (2).

Interaction Levels. Data were simulated us-
ing three levels of interaction variance: 5, 15,
and 25% of the total variance. Sire and total
variance were constant for all data sets; how-
ever, residual variance decreased as interaction
variance increased. Sire variance accounted for
6.25% of the total variance, resulting in a
constant heritability equal to .25 for all of the
data sets.

Data Simulation. The model used to simu-
late the data was

y = Xb + Zu + e,
v = [ulu,], and
Z = [Z,1Z,), [2]

where y is a vector of observations, b is a
vector of fixed herd effects, u; is a vector of
random sire effects, uy is a vector of random
interaction effects, and e is a vector of random
residual effects. The matrices X, Zq, and Z,
are appropriately dimensioned incidence ma-
trices.

If numerator relationship matrix i is denoted
as A, then let A; = I, ® A;. Then A, is the
covariance of H x S effects within herd result-
ing from relationships among sires. These sim-
plifying assumptions were used for expected
values and variance structure for the random

variables: let V = Vo2 + V,0% + V02, where
0%, 0%, and o3 are the residual, sire, and inter-
action components of variance, respectively,
and V; = Z,GZ,, with Zp = I,,, Go = I, G| =

A, Gy =A. Then Vo = I, V| = Z,AZ/, and
V, = Z,AZ,.
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y Xb
E uy = 0
uy 0
e 0
y
v uy =
uz
[
Vo zad zEE 18
Az} AL 0 0
AZZ 0 Aol 0
1074 0 0 1

Herd effects were simulated using a random
number generator with a normal distribution
supplied by Meyer (1989, unpublished data).
Herd variance was 36% of the total variance of
the random effects. Herd effects were indepen-
dently and identically distributed and were un-
correlated with other effects in the model.

Sire effects were simulated by generating a
vector of independent standard normal devi-
ates, r, and computing the vector of sire effects
as u; = Ljra), where L; is the decomposition
matrix described in Equation [1]. Then V(u;) =
LV@L, = LIL,o* = Ag>. The H x S was
simulated using a similar procedure so that
Vuy) = Kd%. The right-hand sides of the mixed

model equations and the sum of squared obser-
vations, y’y, were calculated as the data were
simulated.

Varlance Component Estimation

Minimum variance quadratic unbiased esti-
mation (MIVQUE) was used to estimate vari-
ance components because 1) MIVQUE does
not require iteration, and the expectations of
the quadratic forms are identical for replicates
of the same data structure, model, and prior es-
timate of the variance components; 2) MIV-
QUE provides the minimum variance estimate
of variance components when the true model
and variance components are used (both are
known in this study because the data were
simulated); and 3) MIVQUE is unbiased when
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the correct model is used, so bias that is due to
an incorrect model may be estimated by com-
parison of the unbiased estimates with those
obtained using the incorrect model.

Variance components were estimated for
five models described in Table 2. The two
simplest models (models 1 and 2) consider
only sire and residual variance, whereas the
remaining models include interaction variance.
Models 1 and 2 are referred to as sire models,
and models 3, 4, and 5 are designated as
interaction models. Within the sire and interac-
tion model types, the models differed by the
way that sire relationships were included when
variance components for sire and interaction
were estimated.

When sire models were used to analyze the
data, the residual variance was redefined as the
sum of the residual and interaction components
used for the simulation.

The mixed model equations (MME) for in-

teraction models were
XX XZ; X2y 1)
ZX Z,Z,+G'a Z,z, o |=
ZX 22, 2,2,+G's || %2
X'y
Zy
Zy

and, for sire models, they were

XX X7 b
Z,X Z,Z,+G}'s B
X'y
Zy

where & = '73/’9?, and 5"i2 is the prior estimate
of alz Because the residual variance differed

for sire and interaction models, the variance
ratios were also different. The MME can be
written as C§ = W'y, where

W = [XIZ,1Z,] and
§I ’ ’

b’ &, @]
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TABLE 2. Models used to calculate estimates of variance
components, considering variance structure of sire effects
[Var(u;)] and interaction effects [Var(uy)].

Model Var(u;)! Var(u,)?
Sire models
1
2 Adt .
Interaction models
I 102
Ad Io?
Ad a@ ® Ay}

I is an identity matrix, A is the numerator relationship
matrix among sires, af is the sire variance.

2@ is the direct or Kronecker product, o% is the interac-
tion variance.

Then
§ = Clwy.

The tilde (~) will be used to indicate a value
(scalar, vector, or matrix) that is a function of
the prior estimates of the variance components
(i.e., for variables for which the value may
change if the priors change).

The inverse of the coefficient matrix, C-1,
existed because herds were the only fixed ef-
fects considered in the model; i.e., C was full
rank because the mean was included in herd
effects.

The MIVQUE quadratics suggested by Rao
(18) were used. Rao (18) defined a class of
symmetric matrices B such that BX = 0 and
aBV) =p, i=01, 2, ..., k, where tr()

indicates the trace operation. If o’ = (63 o3 - - -

oﬁ), then y’By is a class of unbiased translation
invariant estimates of p’s, where

P=@ p2... P

The minimum variance estimator of p’e from
that class is y’By, where

k
B = Y MPyViby,
i=0
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Py = V-1 _ ¥-IX xXV-IXy XV,

and

Mr

v =

i

Vi¥i.
0

The MIVQUE of p’s is A’§, where X is a
solution to S\ = p,and Sisak + 1 byk + 1
matrix for which element ij is r(PyV;PyV)).
More simply, S is the matrix of the expecta-
tions of the quadratic forms

g'q%ql 2 ... Gx), where
vViPvy. (3]

Then, §# = §, equating the quadratics to their
expectations. Finally, & = §°14.

A simpler form of the Rao (18) quadratic
forms was computed as described by Schaeffer
(1979, unpublished data). The quadratics were
reorganized to use the solutions from the
MME. Expanding Equation [3],

ql
i

yiv! - lxalxyxvl)
Vil - v lxx v Ixyxvhy
v - Xby¥-lvi¥-lg - x6),

G

where
b = XV-IXy XV-ly.

Then

G = ¢ - XbyV'ZGzZ Vg - XB)

¥ - XbYV'ZGy0'67 )
¥GZV 'y - XB),

and, because
'~Yi’GiziiV_l(2Y - Xb) (),
6,G; 0y,

’ __2 .

0;
Q&

If we define @iy = &, the estimated residual
effects, then the calculation of gy = & would
require the estimated residual for each observa-
tion. However, using results from the MME,
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&e

& - Xb - Zay (y - Xb - Za)
2
Yy - ¥Wy - ¥ & V{6,

i=1

but & = 81§, a linear combination of the
MIVQUE quadratics defined by H, such that
H-! exists, is also MIVQUE,; i.e., solving HS#
= Hq implies that

7 = @SY'H§ = $"'H-'Hg = §-1§ 8).

Thus, to simplify calculations, two changes
were made. First, §; for i = 1,2 were scaled
such that q; = gjv;, and, second, q(‘) =yy -
§W'’y were used in place of gy = &&.

To calculate the expectations of the quad-
ratic forms, it is useful to partition the matrix
(ZglZy1Z,)'W and the inverse of the augmen-
ted equations (Schaeffer, 1979, unpublished
data). Let

My
M= M |=
M;
X Z, Z
Z,X 2,2, %12z,
and
¢o
el o= Fol!
c o,
such that
b CoOW'’y
i = Clwy
iy C2wy
Then the expectation of q; fori =1, 2,
E(; G;'0))
ir =1 Feigxss
= E(y'w¢' G; Cw Y)
= o(WC'G'CW'V)
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k . . ’

w(WC'G; | CW'Z.G.Z)o?
=0 171707
k . . ’
Y, oG]\ TWZGZ Wy?
j=0
k

iren—1 ing

jgb (€ "G} M, GM)’.

The expectation of q(', is

Ey’y - §W’y) = E(y’y) - EG'W'y). [4]

Taking the first half of the expectation of
the quadratic form in Equation [4],

’

k
Eyy) = Y, WGZZ)X? + b’X'Xb.
i=0

This expectation simplifies to
k

EQ’y) = Z no% + b’X’Xb if the diagonal
i=0
elements of G; are all 1, because the trace of a
product of two matrices is the sum of the
products of the diagonal elements if one or
both of the matrices are diagonal (8). All di-
agonal elements of G; are 1, if, as in this
study, no sires are inbred. The second half of

the expectation of the quadratic form of q(') is

EG'WYy) = EyWCWYy)
k
= B(Y, w(C'M;GM,)!
i=0
+ b'’X’Xb.
Combining these expectations,

) EQ'y - ¥WYy) =
Y @ - &M, GM))?.
i=0
Finally, the variance components were esti-

mated by equating the expectations to the
quadratics.

RESULTS AND DISCUSSION

Estimates of sire, interaction, and residual
variance, and heritability averaged over 1000
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[msire Variance
1 @ interaction Variance
{3 Residual Variance

Estimated Variance (% of True Vaiue)

RM 1 2 3

1.2 3

"] — - — ) m— w— ] e f — —f ——

12 3 1 2 3 1.2 3

Figure 1. Average estimates of sire, interaction, and
residual variance as a percentage of the true values for
data with three structured relationship matrices (RM 1 =
10 pairs of half-sib sires, 2 = 4 sets of 5 half-sib sire
groups, and 3 = 20 half-sib sires), 25% herd-sire sub-
classes filled, and interaction simulated at 15% of the total
variance for five models (M) for estimation of variance
components.

replicates for each combination of relationship
matrix, data structure, interaction level, and
model type are presented in Table 3. All esti-
mates were calculated using the true values of
the variance components for the prior esti-
mates in the MIVQUE estimators.

Sire Relationships

Estimates of sire and interaction variance
decreased when relationships were ignored, in
agreement with previous reports (4, 25). The
reduction in variance was evident from com-
parisons of estimates for models 3 and 5 (sire
and interaction variance) or models 1 and 2
(sire variance) for a specific data structure,
interaction level, and relationship matrix. Fig-
ure 1 presents a characteristic example of the
differences in estimates of variance compo-
nents compared with true values for the three
structured relationship matrices and five esti-
mation models; interaction was simulated at
15% of the total variance, and 25% herd-sire
subclasses were filled. The ratio of estimates
of sire or interaction variance when relation-
ships were ignored to those when relationships
were considered [i.e., ratio of estimates from
model 1 vs. 2 (sire variance) or model 3 vs. 5
(sire and interaction variance)] ranged from .97
to .99, .91 to .95, and .70 to .76, respectively,
for relationship matrices 1 (10 pairs of half-
sibs), 2 (4 sets of 5 half-sibs), and 3 (20 half-
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TABLE 3. Average! minimum variance quadratic unbiased estimates? of sire, interaction, and residual variance
components and heritability for each combination of the three structured relationship matrices? (RM), data structure4 (DS),
and interaction level® (IL) in the data for all models (M).

RM1 RM2 RM3
DS IL Ml M2 M3 M4 M5 Ml M2 M3 M4 MS Ml M2 M3 M4 MS
—_— (F) — Sire variance
100 5 L0619 .0627 .0613 .0621 .0621 .0609 .0647 .0602 0639 0640  .0479 .0639 .0474 .0633 .0633
100 15 .0635 .0642 .0616 .0623 .0624 .0614 0646 .0595 .0625 .0628 .0487 .0650 .0473 .0631 .0631
100 25 .0649 0658 .0617 .0624 .0627 .0623 .0654 .0593 .0618 .0623 .0501 .0668 .0477 .0636 .0636
25 5 .0661 .0671 .0608 .0615 .0615 .0645 .0688 .0595 .0629 .0630 0508 .0676 .0468 .0624 .0624
25 15 0783 0802 .0621 .0629 .0629 0762 .0816 .0608 .0637 .0637 0592 .0789 .0470 .0627 .0627
25 25 .0892 .0916 .0623 .0631 .0632 .0862 .0931 .0602 .0632 .0635 0662 .0881 .0439 .0612 .0612
10 5 L0815 .0830 .0617 .0625 .0624 0798 0852 .0605 .0634 .0636 0627 0830 .0474 0631 .0632
10 15 1213 1242 .0621 .0630 .0629 .1151 1253 .0590 .0621 .0622 10917 .1203 .0458 .0611 .0611
10 25 1601 .1641 .0624 .0635 .0632 .1531 .1678 .0585 .0617 .0615 1198 .1567 .0465 .0620 .0620
Interaction variance
100 5§ .0492 .0492 .0498 .0483 .0483 .0508 .0376 .0376 .0501
100 15 .1489 .1489 .1510 .1438 .1438 .1523 1123 11122 .1497
100 25 .2486 .2485 2519 .2396 .2396 .2530 1894 1894 .2526
25 S .0491 0491 .0496 0471 .0472 0497 .0370 .0369 .0493
25 15 .1493 1494 1510 .1428 1428 .1503 .1120 .1120 .1493
25 25 .2508 .2509 2536 2378 2378 2502 1867 .1867 .2488
10 5 .0497 0497 0506 .0476 .0476 .0501 .0380 .0380 .0507
10 15 .1488 .1486 .1509 1422 .1421 1501 .1140 .1140 .1521
10 25 2559 2454 2493 2378 .2373 2505 .1840 .1840 2453
Residual variance
100 5§ 9384 9384 .8913 .8913 .8914 19369 9369 .8907 .8907 .8909 9258 9258 .8898 .8898 .8898
100 15 9337 .9337 .7913 .7913 7913 9271 9271 7896 .7896 .7891 .8990 .8990 .7917 .7917 .7917
100 25 .9280 .9280 .6904 .6904 .6903 9182 9182 .6891 .6891 .6890  .8706 .8706 .6895 .6895 .6895
25 S5 9245 9245 8898 .8898 .8898 9246 9246 .8913 .8913 8912 9168 9168 .8907 .8907 .8907
25 15 .8965 .8966 7911 .7911 .7911 .8927 .8927 .7917 .7917 .7918 .8690 .8650 .7899 .7899 .7899
25 25 .8678 .8679 .6902 .6902 .6902 8574 8574 6893 .6893 .6894 .8216 .8216 .6899 .6899 .6899
10 5 9098 .9099 .8920 .8920 .8920 9070 .9070 .8900 .8900 .8900 9063 9063 .8927 .8927 .8927
10 15 .8432 .8433 7901 7901 .7901 .8421 .8423 .7908 .7908 .7908 .8303 .8305 .7895 .7895 .7894
10 25 7779 .7781 .6903 .6903 .6903 1745 7749 6897 .6897 .6897 7563 7566 .6904 .6904 .6904
Heritability
100 5 246 249 243 246 246 242 256 239 253 253 196 256 .193 253 250
100 15 253 256 244 247 247 246 259 238 249 248 204 267 .198 259 .249
100 25 259 263 245 247 248 252 264 238 248 246 216 282 205 .268 .251
25 5 264 268 241 244 244 259 275 237 249 249 208 272 191 .250 .247
25 15 318 326 245 248 248 311 .331 241 .252 250 253 329 197 257 248
25 25 369 378 245 249 248 361 .387 .241 257 250 296 .383 197 258 242
10 5 325 331 243 246 245 320 .339 239 250 .250 257 332 192 251 248
10 15 497 507 244 248 247 474 511 233 245 243 393 499 191 249 240
10 25 671 685 245 249 247 649 699 231 243 240 539 675 199 257 243

1Average of 1000 replicates.

2True values: for sire variance, .0625; for interaction variance, .05, .15, and .25; for interaction simulated at 5, 15, and
25% of the total variance, respectively; for residual variance for interaction models, 8875, .7875, and 6875, for
interaction simulated at 5, 15, and 25% of the total variance, respectively, and .9375 for all sire models; and for
heritability, .25.

3Relationship matrices, 1 = 10 pairs of half-sib sires; 2 = 4 sets of 5 half-sib sire groups; 3 = 20 half-sib sires.
4Data structure, percentage of filled herd-sire subclasses.
SInteraction level simulated, measured as a percentage of the total variance.
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sibs). Clearly, the reduction in variance is a
function of the relationship matrix across inter-
action levels and data structures. Residual vari-
ance was unaffected by relationship considera-
tions in the estimation model.

Following changes in sire variance, herita-
bility estimates decreased when relationships
were ignored when estimating sire variance
and interaction was treated similarly (i.e.,
models 1 vs. 2 and models 3 vs. 4) (Table 3).
However, when relationships were ignored
only for interaction (model 4), heritability in-
creased slightly because of the reduction in
total estimated variance, and this bias in-
creased with levels of interaction and relation-
ship (Table 3).

Model Type

Interaction Models. The main differences
observed in interaction models were due to
differences in true variances. As true interac-
tion variance increased in the data, the true
residual variance decreased. As expected, the
estimates for interaction and residual variance
followed the same pattern. No differences ex-
isted because of data structures, relationship
matrices, or interaction levels on the interac-
tion models other than reduction in estimates
that was due to ignoring relationships on sire
and interaction variance previously discussed
(Figures 1, 2, and 3).

200 -

180 | o e
L Sire Variance '
| ® Interaction Variance
1

5 Residual Variance

160

140

Estimated Varniance {% of True Value)
-
2
8

DS 100 25 10

100 25 10
(' — e — S — — — 4 w— m—

100 28 10 100 25 10 100 25 10

Figure 2. Average estimate of sire, interaction, and
residual variance as a percentage of the true values for
data with three proportions of herd-sire subclasses filled
[data structures (DS)), the relationship matrix for four sets
of five half-sib sire groups, and interaction simulated at
15% of the total variance for five models (M) for estima-
tion of variance components.
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O Residual Variance

Estimated Variance (% of True Value)

w 5 156 26

M — ] —

§ 15 25

— D —

5 16 25

— —

5 15 26

—_—d —

5 15 25

— 5 —

Figure 3. Average estimates of sire, interaction, and
residual variance as a percentage of the true values for
data with three simulated interaction levels (IL), the rela-
tionship matrix for four sets of five half-sib sire groups,
and 25% herd-sire subclasses filled for five models (M) for
estimation of variance components.

Sire Models. Estimates of sire variance in-
creased when interaction was removed from
the estimation model. This bias increased as
the data were more unbalanced (Figure 2).
When the data were nearly balanced (100%
herd-sire subclasses filled), the sire variances
estimated using sire models were similar to the
corresponding estimates obtained with the in-
teraction models. The increase in sire variance
as data were less balanced may be due to
confounding of prediction of sire breeding
values and underlying H x S effects. If a sire is
represented in few environments, the H X S
effects in those herds may effect the predicted
breeding value of that sire more severely than
a sire represented in many herds. Estimates of
sire variance also increased as the interaction
level simulated in the data increased (Figure 3).

When sire and interaction models that esti-
mated variance components using similar as-
sumptions for sire relationships were compared
(ie, model 1 vs. 3 and 2 vs. 5), the sire
variance estimated from the sire models was
larger than that estimated from the interaction
model. These differences were measured as a
fraction of the estimate of interaction variance
from the true model (model 5) for the same
data. The proportions presented in Table 4
were similar for each combination of data
structure and relationship matrix across inter-
action levels. The similarity of the ratios
within a given combination of data structure
and relationship matrix suggests that the in-
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TABLE 4. Ratios! of differences? (RD) of average minimum variance quadratic unbiased estimates of sire variance when
interaction was removed from the variance component model measured as a proportion of the interaction variance
estimated using model S for combinations of the three structured relationships? (RM), data structures® (DS), and

interaction levelsS (IL).

RM1 RM2 RM3
DS IL RD1 RD2 RD1 RD2 RD1 RD2
(%)
100 5 012 012 012 012 .010 013
100 15 012 012 012 012 .010 .013
100 25 013 012 012 012 .009 013
100 Xs 012 012 012 .012 009 013
25 5 107 A12 102 118 .080 107
25 15 107 114 .103 119 .082 .108
25 25 .106 112 .104 118 .0%0 108
25 X 107 113 103 119 .084 .108
10 5 .391 A08 385 431 303 391
10 15 .392 406 374 421 .301 .389
10 25 392 .405 378 424 .299 .386
10 X 392 406 379 425 .301 .389

Ratios of averages of 1000 replicates.

2Ratio of differences, 1 = differences for models with relationships ignored (models 1 and 3) [i.e., (model 1 sire —
model 3 sire)/model 5 interaction}, 2 = differences for models with relationships considered (models 2 and 5) [i.e., (model

2 sire ~ model 5 sire¥model 5 interaction].

3Relationship matrices, 1 = 10 pairs of half-sib sires, 2 = 4 sets of 5 half-sib sire groups, 3 = 20 half-sib sires.
“Data structure, percentage of filled herd-sire subclasses.

SInteraction level simulated, measured as a percentage of the total variance.

6Mean of the ratios for three interaction levels for a data structure.

crease in sire variance for each combination
was proportional to the interaction level pres-
ent in the data. The proportions were compared
by calculating ratios of the mean proportions
for the data structures. The ratios ranged from
.10 to .12, .028 to .033, and .27 to .28, respec-
tively, for 100 to 25, 100 to 10, and 25 to 10%
herd-sire subclasses filled. These ratios were
similar for all relationship matrices, suggesting
that the increases in sire variance were a con-
sistent function of the data structure.

The true value of residual variance in the
sire models included the residual and interac-
tion variances from the interaction model. In
nearly all instances, the residual variance was
underestimated. The degree of underestimation
of residual variance increased as sires were
more related (Figure 1), as the data were more
unbalanced (Figure 2), and as interaction in-
creased (Figure 3).

Similar to the comparison of changes in
estimates of sire variance, differences in
residual variance estimates that were due to
removal of H x S from the estimation model

were calculated for models using similar as-
sumptions for sire relationships (i.e., models 1
vs. 3 and 2 vs. 5), and these differences were
measured as a proportion of the interaction
variance estimate from the true model (model
5) for the same data. The proportions presented
in Table 5 were similar for each combination
of data structure and relationship matrix across
interaction levels. This pattern was similar to
that for the differences in sire variance. The
similarity of the proportions for combinations
of data structure and relationship matrix sug-
gests that the increase in residual variance for
each combination was proportional to the in-
teraction level present in the data. Similar to
the comparison made for changes in sire vari-
ances, the changes in residual variance as a
fraction of the interaction variance were com-
pared across data structures by calculating ra-
tios of mean proportions for the data struc-
tures. The ratios ranged from 1.3 to 1.4, 2.6 to
2.7, and 1.9 to 2.0, respectively, for 100 to 25,
100 to 10, and 25 to 10% filled herd-sire
subclasses. The narrow range of ratios suggests
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TABLE 5. Ratios! of differences? (RD) of average minimum variance quadratic unbiased estimates of residual variance
components when interaction was removed from the variance component model measured as a proportion of the
interaction variance estimated using model 5 for combinations of the three structured relationships3 (RM), data structures4

(DS), and interaction levelsS (IL).

RM1 RM2 RM3
DS L RD1 RD2 RD1 RD2 RDI RD2
(%)

100 5 945 943 910 906 717 17

100 15 943 943 903 906 7 77

100 25 944 944 905 906 17 77

100 Xs 944 944 906 .906 717 am
25 5 699 700 671 672 .530 .530
25 15 698 698 672 672 .530 530
25 25 .700 701 672 672 529 529
25 X 699 699 61 672 530 .530
10 5 352 353 338 340 268 269
10 15 352 352 341 343 269 270
10 25 351 352 339 .340 269 270
10 X 352 353 339 341 268 269

IRatios of averages of 1000 replicates.

ZRatio of differences, 1 = differences for models with relationships ignored (models 1 and 3) [i.e., (model 1 residual -
model 3 residual)/model 5 interaction], 2 = differences for models with relationships considered (models 2 and 5) [i.e.,
(model 2 residual — model 5 residual)model 5 interaction).

3Relationship matrices, 1 = 10 pairs of half-sib sires, 2 = 4 sets of 5 half-sib sire groups, 3 = 20 half-sib sires.
4Data structure, percentage of filled herd-sire subclasses.

SInteraction level simulated, measured as a percentage of the total variance.

6Mean of the ratios for three interaction levels for a data structure.

that the proportionate increase in residual vari-
ance when adjusted for the interaction level in
the data was a consistent function of the data
structure.

Heritability estimates using sire models
ranged from slightly underestimated to dramat-
ically overestimated (Table 3). Heritability esti-
mates decreased if relationships were ignored
compared with those with relationships (i.e.,
model 1 vs. model 2), and this bias increased
with higher levels of sire relatedness (Table 3).
Heritability increased as the interaction level
increased and as the data were more un-
balanced (Table 3) regardless of whether rela-
tionships were included or ignored. Heritability
estimates were more biased than sire variance
because the biases in estimates of sire and
residual variance components tended to be in
opposite directions so that as estimates of sire
variance increased, the estimate of total vari-
ance often decreased. As a result, the heritabil-
ity often increased drastically when interaction
was removed from the model.

Journal of Dairy Science Vol. 77, No. 1, 1994

Relationship Matrices from Calving
Ease Data

Relationship matrix 4, that of young sires,
had average nonzero off-diagonals of .10 and
15% nonzero off-diagonal elements. Relation-
ship matrix 5, that for 20 sires without restric-
tions, had average nonzero off-diagonal ele-
ments of .16 and 13% nonzero off-diagonals
elements. The most common nonzero off-
diagonal element in relationship matrices 4 and
5 was .0625.

Table 6 contains average sire, interaction,
and residual variance, and heritability esti-
mates for the relationship structures 4 and 5. In
general, the estimates of variance components
for relationship matrices 4 and 5 were very
similar to those from the structured relation-
ship matrix 1, corresponding to 10 pairs of
half-sib sire pairs (see Table 3 for comparison).
The ratios of average estimates of sire and
interaction variance ignoring sire relationships
to estimates with sire relationships ranged
from .97 to .99 for relationship matrices 4 and
5. The range of ratios was nearly identical to
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TABLE 6. Average! minimum variance quadratic unbiased estimates? of sire, interaction, and residual variance
components and heritability for each combination of the two relationship matrices selected from the calving ease data3
(RM), data structure? (DS), and interaction level® (IL) in the data for all models (M).

RM4 RMS
DS IL Ml M2 M3 M4 MS M1 M2 M3 M4 MS
(%) Sire variance

100 5 0635 0645 0629 0638 .0639 0612 0626 0606 0620 .0620

100 15 0642 0650 0624 0631 .0632 0639 0655 .0621 0635 .0637

100 25 0646 0655 0615 .0623 0625 0652 0664 0620 0631 .0633
25 5 0672 0684 0619 0628 .0628 0664 0682 0612 0626 .0627
25 15 0770 0786 0609 0618 .0619 0766 0789 0608 0622 .0622
25 25 0903  .0925 0636 0646 .0646 0893 .0924 0625 0640 .0640
10 5 0819 0833 0622 .0630 .0631 0805 0829 0612 0622 .0622
10 15 1203 (1228 0616 .0623 .0624 1217 1269 0632 0640 0639
10 25 1632 1670 0623 0630 .0632 1585 1658  .0600 .0608  .0605

Interaction variance

100 5 0491 0491  .0498 0489 0489  .0497

100 15 1481 1481 1504 1476 1476  .1511

100 25 2463 2463 2501 2460 2460 2515
25 5 0485  .0485 .0493 0485 0485  .0499
25 15 1483 1483 1506 1459 1459 1502
25 25 2463 2463 2502 2453 2452 2523
10 5 0488 0488  .0494 0495  .0495  .0503
10 15 1476 1477 1497 1457 1460  .1483
10 25 2497 2498 2532 2461 2461 2501

Residual variance

100 5 9384 9384 8914 8914 8914 9389 9389 .8921 8921  .8924

100 15 9323 9323 7906 7906 7906 9318 9318 7907 71907  .7190§

100 25 9269 9269 6914 6914 6912 9255 9255 6903 6903  .6903
25 5 9269 9269 8926 8926  .8926 9251 9251 8909 .8909  .8909%
25 15 8954 8955 7906 .7906  .7906 8946 8946 7917 7917 7916
25 25 8649 8650 6908 .6908  .6908 8622 8623 6892 6892  .6892
10 5 9080 9081 8906 .8906 .8906 9082 9082 .8904 8904 BI04
10 15 8445  B447 7915 7915 791§ 8432 8434 7910 7910 .7910
10 25 794 7796 6908 6908 6908 7785 7788 6905 6905  .690S

Heritability

100 5 252 256 249 253 252 .243 248 240 245 245

100 15 256 259 247 250 250 255 260 .246 251 251

100 25 259 262 245 .248 .247 .261 266 .246 250 250
25 5 269 272 245 248 248 266 273 242 248 248
25 15 314 320 241 245 244 312 321 241 246 .245
25 25 375 382 251 255 254 37 383 .248 253 251
10 5 328 333 245 .248 .249 322 331 241 245 245
10 15 492 .500 242 244 244 499 516 249 251 251
10 25 .680 .693 243 245 .245 664 689 236 238 237

lAverage of 1000 replicates

2True values: for sire variance, .0625; for interaction variances, .05, .15, and .25, for interaction stimulated at 5, 15,
and 25% of the total variance, respectively; for residual variance for interaction model, .8875, 7875, and .6875; for
interaction simulated at 5, 15, and 25% of the total variance, respectively, and .9375 for all sire models, and for
heritability, .25.

3Relationship matrices, 4 = 20 young sires from the calving ease data, 5 = 20 sires of any age for the same data set.
4Data structure, percentage of filled herd-sire subclasses.
SInteraction level simulated, measured as a percentage of the total variance.
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that for relationship matrix 1. Considering or
ignoring relationships for estimation of vari-
ance components had little effect on estimates
of any of the variance components. Sire vari-
ance was overestimated using sire models, and
this bias increased as interaction levels in-
creased and the data were more unbalanced
(Table 6). Heritability tended to be overesti-
mated using sire models, whereas estimates
from interaction models were much less biased
(Table 6). As expected from results for the
estimates of variance components only minor
biases in heritability estimates were caused by
ignoring sire relationships.

CONCLUSIONS

When relationships were ignored, sire and
interaction variances tended to be underesti-
mated, and the average bias was larger for
populations with more closely related sires.
Sire variance was overestimated for sire
models, and the bias depended on the data
structure and interaction level of the data.
Residual variance was underestimated when
variance components were estimated from sire
models, resulting in heritability estimates
sometimes being extremely biased.

Although interaction was underestimated
when relationships were ignored, the degree of
bias was relatively small for the relationship
matrices considered to be representative of the
Al population. This small bias suggests 1) that
relationships may be ignored with little affect
when sires are not closely related and 2) that
interaction is not extremely high. However,
even with relatively low levels of interaction,
biases in sire variance and heritability esti-
mates were substantial when interaction was
removed from the model. These biases indicate
that interaction should be included in the vari-
ance component model (with relationships ig-
nored for H x S, if necessary) even if the data
are only moderately unbalanced and H x S is
expected to be present at relatively low levels.
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