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ABSTRACT

Lactation records are calculated from data on milk,
fat, and protein obtained from one or more milkings
on several days during the lactation. The test interval
method, which estimated missing daily milk yields by
simple interpolation, was used for many years for
standard monthly data but may not be as useful for
the wider variety of test plans now being proposed.
More accurate 305-d yields can be computed using
best prediction, which has optimum properties if
means and (co)variances are known and distribution
is multivariate normal. The covariance of test day
and 305-d yields is multiplied by the inverse of the
test day (co)variance matrix, which is then multi-
plied by the test day deviation vector. This predicted
305-d deviation plus the mean 305-d yield equals the
predicted 305-d yield. Similar algebraic methods are
used to compute the correlation of true and estimated
305-d yields, which is needed to calculate lactation
weights. Computation times were affordable but not
trivial; they ranged from 0.001 to 1 s per lactation.
Equations were modified to account for differing ac-
curacies of data for partial days, means for multiple
days, and data for unsupervised tests. Complete or
incomplete lactations recorded with very different
testing plans can be graphed and compared by best
prediction.
( Key words: test day yield, test interval method,
best prediction, lactation weights)

Abbreviation key: DCR = data collection rating,
LER = labor efficient record.

INTRODUCTION

Milk recording in the US is less uniform than in
the past; several of the plans are familiar, but many
more innovative plans exist as well. Until recently,
monthly testing and sampling provided test day data
that fit into fairly simple formulas that gave accurate

and consistent lactation records. New test plans with
varying test intervals, incomplete data on test day,
reduced supervision, and electronic recording can pro-
vide less expensive lactation records with lower or
even higher accuracy. A wide variety of plans can
provide useful data for genetic evaluations, but data
should be weighted according to accuracy and com-
bined using improved formulas that adapt to data
design.

Lactation totals are calculated by the test interval
method in many nations. This method was invented
in 1880 ( 8 ) and became the official method for cal-
culating US lactation records in 1969 (15). Lactation
totals are calculated from test day yields by “connect-
ing the dots” using linear interpolation between data
points as shown in Figure 1. Shook et al. (11) im-
proved the test interval method by deriving a set of
factors that better estimated daily yields before the
first test, after the last test, and at peak yield. The
amended test interval method performed well when
applied to monthly testing and sampling but was not
designed for the wider variety of plans now used.

Variables for record standards allowed the US
dairy industry to describe differences between test
plans more completely. In 1996, four new variables
(numbers of supervised tests, unsupervised tests, su-
pervised component samples, and unsupervised com-
ponent samples) and three previous variables (DIM,
test plan, and lactation number) were used to calcu-
late lactation weights (13). Lower weights were as-
signed to records with unsupervised tests, missing
component samples, or tests that were less frequent
than once per month (13). Although variables for
record standards are an improvement, formulas based
on these variables are approximate rather than exact.
Exact formulas for estimating lactation records and
computing lactation weights depend on the intervals
between test day observations for milk, fat, and pro-
tein and the correlations among them.

Random regression ( 9 ) allows the fitting of lacta-
tion curves to individual lactations. Because curve
parameters are treated as random variables, reasona-
ble estimates are obtained even with few data points.
Unusual data patterns are regressed toward the aver-
age lactation shape observed within a herd. Lactation
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Figure 1. Example lactation plotted by the unadjusted test
interval method (14) where ÿ = supervised milk weight.

curves for future cows in a herd or future daughters of
a sire are predicted from these parameter estimates.

Best prediction considers just one lactation of one
cow and uses those observed yields to predict daily
yields that were not observed. If the test day yields
are multivariate normal, all of the information about
curve shape is contained in the means of the daily
yields and the covariances among the deviations
(12). Thus, best prediction is simple and has maxi-
mum precision if means and covariances are known.
With random regression, some covariances among
deviations are ignored (10). Because a few
parameters can provide a close fit to the many corre-
lations present in a 305 × 305 matrix (5) , best predic-
tion and random regression could produce similar
answers using different algebraic methods.

Genetic evaluations can include test day data
either directly as test day models (6, 16) or indirectly
after lactation yields are estimated. Test day models
can describe biology and define management groups
more precisely but result in large sets of equations.
Simpler sets of BLUP equations were used for na-
tional evaluations in Australia (2, 4) and New
Zealand ( 1 ) and by other researchers (7, 10) to
adjust for environmental factors affecting each test
day before lactation totals are calculated.

An even simpler approach is to apply best predic-
tion to test day yields one lactation at a time. For
each day of lactation, the most probable producing
ability is computed using selection index methodol-
ogy. The lactation total is then the sum of the daily
yields without adjustment for test day environment.
The single equation used in this selection index ap-
proach is less accurate than the simultaneous equa-
tions of BLUP but more accurate than the test inter-

val method. Best prediction allows data from different
cows and from widely differing test plans to be
graphed, compared, and weighted fairly simply.

Objectives of this research were 1) to use best
prediction to compute and to plot lactation yields; 2)
to account for unusual test intervals, data averaged
over multiple days, estimates from partial days, miss-
ing traits, lack of supervision, and mixtures of test
plans; and 3) to derive the accuracy and an appropri-
ate lactation weight for any particular record.

MATERIALS AND METHODS

Correlations between any two test day yields were
estimated by Norman et al. (5) . Sampling variances
and memory were reduced by fitting smooth functions
including linear and quadratic regressions on the
difference in DIM, mean DIM, and an interaction.
From these test day correlations, the correlations or
squared correlations of estimated and true 305-d yield
can be computed. These correlations are higher than
originally reported by Norman et al. ( 5 ) because one
herd with erroneous data was later detected and
deleted.

McDaniel ( 3 ) summarized earlier research on the
accuracy of different test plans. These studies applied
the test interval method to different subsets of test
day data and then examined properties of the result-
ing records. Variances of the difference between(se

2)
305-d yields obtained from daily yields and from
several other plans were available and were com-
pared with variances of true yield within manage-
ment groups . The value for was not reported by(sy

2) sy
2

McDaniel ( 3 ) but instead was approximated using
the mean standard deviation for Holsteins in the
early 1960s (17). Squared correlations of estimated
and true 305-d yields were then computed as /sy

2

.( +sy
2 se

2)
The accuracy of a hypothetical test plan may be

determined by applying algebra to the test day
(co)variance matrix instead of creating or waiting for
a large file of data from such plans. Different record-
ing procedures over different intervals can be com-
pared easily for their abilities to predict true
305-d records or records of other length. Even more
generally, the accuracy of each individual record can
be computed from the test day observations in that
lactation.

Theory

Test day yields with multivariate normal distribu-
tion, known variances, and known means can be com-
bined into a 305-d yield by best prediction. Unless
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data are simulated, estimated means and variances
must be used in place of true means and variances.
Then, selection index procedures can be used to
predict the many missing daily yields from their
covariances with the few measured yields. The lacta-
tion yield is the sum of the daily predicted or meas-
ured yields.

Lactation records for a particular trait can be ob-
tained by single-trait prediction from test day data for
just that trait or by multiple-trait prediction. Single-
trait lactation records derived from one trait are sim-
pler to model, but multiple-trait records are more
accurate, especially when some component samples
are missing (10). Genetic evaluations may soon
predict genetic effects directly from test day data
without first creating a 305-d record (16); however,
lactation yields will continue to be widely used in the
dairy industry.

Using matrix algebra, a 305-d yield ( ŷ ) equals the
mean 305-d yield ( m) plus the covariance between
lactation and observed test day yields ( c) multiplied
by the inverse of the variance for observed test days
( V–1) multiplied by the observed test day deviations
( t) :

ŷ = m + c′V–1t.

Dimensions of t and V are usually <30 with multitrait
prediction and <10 with single-trait prediction of
305-d yields for milk, fat, or protein. Instead of
predicting each daily yield and then summing the
daily predictions, computations were reduced by sum-
ming first so that elements of c contained covariances
for lactation rather than daily yields. Squared corre-
lations (r2) of predicted and true 305-d yields are
c′V–1c/Var(y), and lactation weights ( w ) for an
animal model with repeated records are (1 – rpt)/[(1/
r2) – rpt], where rpt is repeatability of lactation yield
(14).

Tests for Partial Days

The expected values of tests for partial and full
days should be equal if the a.m. and p.m. yields are
adjusted to a 24-h basis using appropriate factors for
number of milkings and milking interval. The vari-
ance of a test for a partial day should be larger than
the variance of a test for a full day because an addi-
tional measurement error is introduced when the
24-h yield is estimated. Covariances among tests for
partial and full days are not affected because meas-
urement errors for different days are assumed to be
independent. Only the diagonals (variances) for tests
for partial days are increased.

To determine the variance in measurement error,
squared correlations obtained by T. K. Meinert
(USDA, 1995, unpublished data) were compared

with squared correlations that had been obtained the-
oretically. For theoretical correlations, the same
proportional increase in variance was assumed for
milk, fat, and protein and across all DIM. Alterna-
tively, actual increases in variance for each trait or
stage of lactation might be justified. For this study,
the theoretical increase was set equal to average ac-
tual increase.

The milking frequency for a herd also affects meas-
urement error. Plans with a.m.-p.m. tests measure
about one-half of the daily yield of cows with twice
daily milking but either one- or two-thirds of the yield
if cows are milked three times daily. Longer or
shorter milking intervals probably also affect the ac-
curacy of the test but exact milking times may not be
reported. Measurement error was assumed to(sm

2 )
decrease as the proportion of milk tested increased
according to the function [(number of=sm

2 asy
2

milkings/number of tests) –1] where the constant a
was determined from data from herds milked twice
daily. Data for herds milked three times daily or more
frequently were not readily available, but the percent-
age of daily milk tested determined . Specifically,sm

2

the for a herd milked three times and tested at twosm
2

milkings would be half as large as for herdssm
2

milked twice and tested once; for a herd milkedsm
2

three times and tested once would be twice as large. If
milking times are recorded, the formula = [(24sm

2 asy
2

h/h of milk recorded) – 1] may estimate more pre-sm
2

cisely. Both formulas should be verified.
Errors on the same day for milk, fat, and protein

are expected to covary for a.m.-p.m. testing; the covar-
iance would be determined by the number of milkings
at which neither of the two traits is measured. For
example, if protein is tested at one of three milkings
but milk is recorded at two of three milkings, the
third milking at which neither trait is measured
causes a common measurement error. The second
milking would not contribute to error covariance be-
cause milk is assumed to be measured without error
at that milking. More generally, the covariance of
traits was multiplied by a[(number of milkings/
milkings tested for either trait) – 1] to account for
a.m.-p.m. measurements of different traits on the
same day.

Means for Multiple Days

With labor efficient records ( LER) , measurement
error for milk yield is reduced because consecutive
daily weights are averaged. Component percentages,
if measured, are multiplied by the mean for milk yield
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to determine fat and protein yields. Variances, covari-
ances, and expected values of LER tests can be gener-
ated from corresponding parameters of the daily milk
yields included in the mean. Each component yield
was assumed to be a simple daily yield because covar-
iances among yields and percentages were not availa-
ble.

Means of electronically stored weights may be more
accurate than monthly testing by either the owner or
a supervisor. Daily fluctuations in milk yield are
minimized when yield is reported as the mean of
yields for several days. The mean yield is then as-
sumed to be the daily yield on either the last day
(sample day) or perhaps the center day of the period
over which the mean was taken. The fat and protein
percentages on test day then are multiplied by the
test day milk yield or mean milk yield to obtain com-
ponent yields. If test day milk is used in this calcula-
tion, reported yields and percentages are inconsistent;
for example, a reported protein percentage of 3.0 and
protein yield of 1.5 kg would agree with the 50 kg of
milk produced on test day but not with the mean milk
yield actually reported. If mean milk yield is used,
component yields do not reflect the correlation that
may occur between sample day milk yield and compo-
nent percentages; for example, if milk yield were
higher on sample day and fat test were lower, the cow
would be credited with lower mean milk yield and the
low fat test.

Currently, percentages for test day components are
multiplied by means for 5 or 7 d of milk yield. In
future LER tests, lactation yields of protein and fat
could be more accurate if the yields for milk, fat, and
protein on test day were separated from the mean for
milk yields from previous days. When component
samples are taken, two data segments could be con-
structed: one for the data on test day and one for a
mean of up to 30 d of milk weights stored prior to test
day. Means longer than 30 d are not recommended
because proposed test day models use monthly time
units to compare cows and to estimate persistency.
When component samples are not taken, only one
data segment would be needed for the mean for milk
yield.

Unsupervised Data

Data may be recorded by an on-farm computer, a
supervisor, or the herd owner. Traditionally, trained
supervisors worked full time to record accurate data.
With unsupervised data, more errors may occur be-
cause herd owners have less training and may have
financial incentives to report higher or lower yields

than were actually obtained. For example, a herd
owner could exaggerate and report that his best cow
produced a world record or report that the daughters
of one sire always produced more than the daughters
of other sires. For this reason, lower weights may be
justified for owner-sampler data than for supervised
data. Owner-sampler data were excluded from USDA-
DHIA evaluations prior to 1997 and thus received no
weight.

Measurement errors from an owner might be ran-
dom and independent from month to month or might
be systematic and affect the entire lactation. If errors
were random, larger variances would be expected but
without change in the covariance between test days.
Then, the same mathematical procedures as for a.m.-
p.m. tests could be employed. If errors were sys-
tematic, the owner’s error could be modeled as a
permanent environmental effect across the lactation.
Equivalently, the permanent environmental effect
could be included in the phenotypic variance to reduce
computation. Then, covariances and variances would
both increase by the variance of the measurement
error for test day. Because errors may be proportional
to phenotypic variance, a fixed constant was added to
the correlation (rather than the covariance) among
any two test days, both measured by the owner.

The size of the fixed constant was determined by
committee rather than by actual estimation. The
desired outcome was to weight owner-sampler records
by 75% as compared with supervised records. Because
errors by the herd owners are treated as correlated,
any supervised tests in the lactation then receive
somewhat more weight because they are treated as
truly independent observations.

Data that are obtained from on-farm computers
may be coded as supervised or unsupervised. Further
study is needed to determine the true range of errors
that are likely or possible with automated recording
systems. All data must meet the standards of the
National DHIA program of quality certification.
Meters, laboratory methods, and data processing are
monitored so that measurements are accurate and
comparable whether milk weights and samples are
taken by a supervisor, owner, or automated device.

Herd Means

Test day means are assumed to be known in theory
but, in practice, can be generated from the lactation
mean for each herd. The yield for each day as a
fraction of total 305-d yield can be computed from one
or more standard lactation curves. These curves could
differ by breed, parity, or production level of the herd.
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A mean of 305-d records adjusted for age, parity,
season, and days open is then assumed to be the true
mean for the herd-year or management group. Test
day data for the cow of interest should be adjusted for
these same effects, or the standardized herd mean
could be unadjusted instead to match environmental
conditions of the particular cow. This second option is
recommended for plotting so that the raw data for the
cow and the estimated lactation curve are both ex-
pressed in the observed units.

Heritabilities

Only phenotypic means and variances were needed
to derive best prediction, but heritabilities and
weighting factors may also be affected by the choice of
scale and methodology. Previously, monthly testing
was the standard, and 305-d records with 10 monthly
tests received a weight of 100%. Higher accuracy of
LER testing now suggests that daily testing should
become the standard simply to prevent weights of
>100%. Thus, only a record with 305 daily tests would
receive a weight of 100%. Heritability of the standard
record would rise accordingly. The choice of which
test plan is used as the standard does not affect the
actual regression of genotype on phenotype (bg.p) for
any plan. With a repeatability of 55%, the two
methods of expressing bg.p for a particular record are
bg.p = old heritability/[0.55 + (0.45/old weight)] and
bg.p = new heritability/[0.55 + (0.45/new weight)].
Suppose that the previous heritability was 0.25 and
the previous weight for monthly testing was 1.0. With
a new weight of 0.94 for monthly testing, the new
heritability must be 0.26 if bg.p is to remain constant.

Computation

A Fortran program was developed to estimate
yields by best prediction and to compute correlations
of true and estimated yields. Performance of the pro-
gram was tested on two IBM computers (model 9370
mainframe and model RS/6000 workstation; IBM, Ar-
monk, NY). Actual times of completion were recorded
while computers were otherwise idle. Memory was
greatly reduced by generating covariances from a
function as needed ( 5 ) instead of storing the 365 ×
365 or 1095 × 1095 covariance matrices used in
single-trait or multiple-trait predictions, respectively.

Test days after d 305 can help in predicting
305-d yields (10). The first test after 305 d but
limited to 365 d was accepted in the data vector. For
lactations <305 d, the incomplete record can also be
summed by best prediction of all daily yields previous
to the current test day. The same algebraic formula is
used for partial, completed, and projected records.

A measure of accuracy, termed the data collection
rating ( DCR) , was defined for use by farmers and
breeders. The DCR is the squared correlation of
predicted and true lactation yields multiplied by 100
and divided by the squared correlation for a standard,
supervised plan with 10 monthly tests. With this
definition, a rating of 100 is reserved for standard
monthly testing instead of for daily testing. Reporting
DCR for lactation records is analogous to reporting
reliabilities of breeding values.

RESULTS AND DISCUSSION

Multiple-trait prediction for a lactation with 10 test
days required inversion of a 30 × 30 matrix plus a few
other algebraic steps. The time required was almost 1
s per lactation on a mainframe computer and 0.02 s
on a workstation. Single-trait prediction required in-
version of three 10 × 10 matrices plus other steps.
Total time was much less: only 0.05 s per lactation on
a mainframe computer and 0.001 s on a workstation.
Missing traits and fewer tests can greatly reduce
processing times because matrices are smaller.

For records in progress, users may desire to know
both the predicted 305-d yield and the incomplete
total yield at the most recent test day, for example,
111-d yield of the cow. Additional time and memory
were required to sum the covariances for these incom-
plete totals because of their nonstandard length.
Standard 305-d yields were simpler to compute be-
cause covariances of 305-d yield with any daily yield
were computed once at the beginning of the program
and stored in a small vector.

Formulas

The test day correlation matrix accounted for
differing number of tests and intervals between test
days for standard testing, but the variances and
correlations within the matrix should be adjusted to
account for other types of tests. For LER tests, the
variance of the reported mean was(sLER

2 )
=SiSjVij/N2sLER

2

where test days i and j are both summed over the
days included in the mean, and N = number of days in
the mean. To account for greater variance of a.m.-p.m.
tests, diagonal elements Vii were increased by
0.3[(number of milkings/milkings tested) – 1]Vii. The
value of 0.3 for the constant, a, resulted in lactation
weights and squared correlations equal on average to
those calculated earlier by T. R. Meinert (USDA,
1995, unpublished data).
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TABLE 1. Lactation weights, squared correlations of true with estimated milk yields, and data
collection ratings for various test plans.

1A 10-d mean reported in each of 10 mo.
2A 5-d mean reported in each of 10 mo.
3Milk weights were obtained from all milkings on each test day.

Test
days

Lactation
weight

Squared correlation
Data
collection
ratingTest plan

McDaniel
( 3 ) Proposed

(no.) ( % )
Daily 305 100 100 100 103
Labor efficient record
10-d Mean 1001 99 . . . 100 103
5-d Mean 502 98 . . . 99 102

Monthly supervised milkings
All3 10 94 97 97 100
2 of 3 10 89 . . . 95 97
1 of 2 10 84 95 92 95
1 of 3 10 77 . . . 88 90

Monthly owner-sampler milkings
All3 10 57 . . . 75 77
2 of 3 10 55 . . . 73 75
1 of 2 10 53 . . . 72 74
1 of 3 10 50 . . . 69 71

Bimonthly supervised milkings
All3 5 88 93 94 97
2 of 3 5 80 . . . 90 92
1 of 2 5 73 . . . 86 88
1 of 3 5 62 . . . 78 81

Bimonthly owner-sampler milkings
All3 5 55 . . . 73 75
2 of 3 5 51 . . . 70 72
1 of 2 5 48 . . . 67 69
1 of 3 5 43 . . . 63 65

Off-diagonals Vij for traits measured on the same
day were increased by 0.3[(number of milkings/
milkings tested for either trait) – 1]Vij. For owner-
sampler testing, 0.18Vii was added to the diagonals,
0.18(ViiVjj) 0.5 was added to the off-diagonals for the
same trait but different test days, and 0.18Vij was
added to the off-diagonals for different traits. The
constant of 0.18 resulted in an assumed squared
correlation between predicted and true lactation yield
of 0.75 for owner-sampler testing versus 0.97 for su-
pervised testing (see Table 1). Corresponding DCR
were 77 for monthly owner-sampler records versus
100 for monthly supervised testing.

Lactation Curves

Lactation curves for an example cow were plotted
using the unadjusted test interval method (15)
(Figure 1) and best prediction (Figure 2). Best
prediction resulted in a smoother curve and predicted
daily yields that, on average, were slightly closer to

the herd mean. The 305-d yields computed by best
prediction also may be less variable than those com-
puted by the test interval method, which does not
regress toward the mean. Predicted daily yields are
less variable than true daily yields because correla-
tions between any two test days are <1.0. Predicted
yields equal true yields only on days when full day,
supervised tests are conducted and no measurement
error is assumed. With other types of tests, such as
a.m.-p.m., predicted yields on test day are regressed
toward the mean and smoothed across the lactation
because observed yields contain true yields plus
measurement error.

For an incomplete lactation (Figure 3), best
prediction extended the curve to 305 d by extrapola-
tion; the test interval method, however, was designed
only for simple interpolation between test days.
Curves from prediction methods such as random
regression should be similar to best prediction when
extrapolating from a few points in early lactation. In
contrast, the straight lines of the test interval method
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Figure 2. Example lactation plotted by best prediction
( ) and compared with contemporary mean (– – –) where ÿ
= supervised milk weight.

Figure 3. Example lactation in progress plotted by best predic-
tion ( ) and compared with contemporary mean (– – –)
where ÿ = supervised milk weight.

connect each observed yield but may produce poor
curves if observations are far apart. Curves by best
prediction are very flexible and can adapt to almost
any data pattern; shapes of the curves by random
regression are limited by the number of parameters.
Also, observations from each test day can be weighted
according to their precision both in best prediction
and in random regression, but precision of test day
data is not considered in the test interval method.

Accuracy

Squared correlations of estimated and true
305-d yields, DCR, and lactation weights for 19 cur-
rent or anticipated milk recording plans are in Table
1. For comparison, squared correlations that were
derived from McDaniel ( 3 ) are included for the plans
he studied. Milk records from LER plans were only
slightly less accurate than daily testing. Monthly test-
ing had a squared correlation of 0.97 with daily test-
ing, which agrees with 0.97 derived from the study of
McDaniel (3) . Lactation weights follow a pattern
similar to that for squared correlations but tend to be
lower. Proposed weights are less than previous
weights (14) because each testing plan now is com-
pared with daily rather than monthly testing.
Squared correlations were converted to DCR by divid-
ing by the 0.97 value for traditional testing. Thus,
DCR are higher than the squared correlations by a
factor of 1.03.

Matrix algebra gives correlations of estimated and
true lactation yield that are more precise than those

obtained by examining samples of data if the
(co)variance structure and distribution of daily yield
are actually known. However, lactation curves and
(co)variances may differ for cows of different breed,
parity, and time period. Further research is needed to
compare the results of random regression and other
estimation procedures to best prediction.

CONCLUSIONS

Best prediction provided a flexible method to calcu-
late 305-d yields and accuracies of those yields as
measured under many different test plans. Computa-
tions were more difficult than for the test interval
method but are affordable. Multiple-trait equations
allowed missing yields for fat and protein to be esti-
mated from test day milk yield. The number of test
days and the length of test intervals were automati-
cally accounted for by the correlations between one
daily yield and all other daily yields.

Increased measurement errors were assumed for
a.m.-p.m. and owner-sampler testing. A mean of con-
secutive daily yields has less error variance than an
individual test day yield, and thus data from LER
plans may be more accurate than data from other
plans. The highest lactation weight should represent
305 supervised test days and 305 samples instead of
10 as in the past. Heritability of lactation yield should
increase slightly with the daily measurements possi-
ble with LER. Genetic evaluations may soon combine
information from the many individual test day yields
instead of lactation yields by BLUP. Such systems
require many simultaneous equations. Until then,
multiple-trait predictions, graphs, and measures of
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accuracy can be calculated one lactation at a time by
best prediction.
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