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ABSTRACT 

Separate estimates of breeding value can be combined us-
ing meta-analysis if a combined analysis of all data is not pos-
sible or efficient. Computation is fast but not exact if the reli-
abilities of the separate estimates are approximate, if the ex-
tent of overlap of the datasets is unknown, or if selection has 
occurred across the datasets. Selection index methods were 
used to combine single-trait evaluations into approximate mul-
titrait evaluations for productive life and to combine single-
country rankings into multicountry rankings for yield traits. 
The same methods are used for males and females. To avoid 
iteration, parent evaluations were included in the data and 
combined before progeny evaluations. A little information is 
lost because foreign progeny contribute to domestic parents 
but not to domestic grandparents. Exchange of sire and dam 
evaluations provides a closer connection between national and 
international evaluations and may be more accurate than the 
current sire-maternal grandsire model used internationally. 
Correlations of the two evaluation methods were about 0.99 
for 35,414 bulls from eight countries. The estimated breeding 
value of each bull was adjusted separately for information 
from foreign parents and foreign progeny. Reliabilities of the 
animal, its sire, and its dam were used to determine how much 
information came from the parents of the animal versus from 
its progeny and records. Multitrait reliabilities for productive 
life were higher than single-trait reliabilities by a mean of 7% 
for recent bulls and 3% for recent cows. Selection index meth-
ods may allow current multitrait across-country evaluations 
for bulls to be improved and to be extended to cows.  
(Key words: breeding values, multitrait, meta-analysis, selec-
tion index) 
Abbreviation key: AIPL = Animal Improvement Programs 
Laboratory, DE = daughter equivalent, h2 = heritability, MACE 
= multitrait, across-country evaluation, MGS = maternal grand-
sire, MS = Mendelian sampling, PA = mean of genetic merit of 
parents, PEV = prediction error variance, PL = productive life, 
REL = reliability, SI = selection index. 

INTRODUCTION 

Statistical methods such as selection indexes (SI), BLUP, 
and Bayes’ theorem allow animal breeders to get the most 
accuracy from their available data. The use of more data can 
provide even higher accuracy, but data from all traits, all 

places, and all times may not be available in the same data-
base. Exact statistical methods that work well for smaller data 
subsets may not work at all with a large, combined dataset. 
Approximate combination of estimates from separate datasets 
can be achieved through an SI (Hazel, 1943; Smith, 1936). 
Better models might be applied to each dataset and then 
evaluations combined to include information from all sources. 

Multitrait models can increase accuracy by adding corre-
lated data from other traits. Although more accurate, multitrait 
equations are harder to set up and to solve when different traits 
have different models and different patterns of missing data. 
Approximate multitrait evaluations might result from first 
computing single-trait evaluations and then combining those 
evaluations through an SI. This approach reduces computation 
because only covariances among EBV are required instead of 
covariances among all data points. 

“It seems inevitable that, as solutions to existing problems 
are sought, the methodology will become more complex, both 
in the statistical solutions and in the computations needed to 
obtain numerical answers. Ideally, however, simple methods 
of estimation are needed. Understanding of statistical methods 
is improving. Larger and faster computers are becoming more 
common, and the work that can be accomplished relative to 
costs is increasing. As solutions to problems are found and 
computing algorithms developed, perhaps the goal of simpli-
fying estimation can be achieved.” Those conclusions were 
presented by A. E. Freeman at the 1979 conference to honor 
his major professor, C. R. Henderson (Freeman, 1979). 

Henderson’s mixed model methods and BLUP are now 
used so much by animal breeders that all of his excellent pa-
pers no longer need to be cited in research reports. The statis-
tical methods of Henderson (e.g., 1973) give accurate predic-
tions and are easy to follow for those with training in matrix 
algebra. Traits such as longevity or performance in another 
environment may be difficult to observe directly or early in 
life, but correlated traits of relatives may aid in predictions. 
Because relatives share different fractions of the same genes, 
statistical models that include data from related animals more 
accurately predict the merit of each by accounting for their 
shared genes. 

Henderson and Quaas (1976) concluded that accuracy and 
cost must be balanced when dealing with multiple traits. 
Thompson and Meyer (1986) discussed the similarity of SI 
methods and multitrait BLUP. Weigel et al. (1996, 1998) de-
veloped SI methods to obtain approximate multitrait EBV for 
productive life (PL) from direct longevity and earlier corre-
lated traits of daughters. 

A goal of statistics is to predict the future by using past 
data to estimate real causes and effects in systems that are not 
100% repeatable because some random chance (error) occurs. 
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Because of this error, predictions are not exact, and, therefore, 
statisticians provide confidence intervals or reliabilities (REL) 
to measure the expected error. Bayes (1763) realized that pos-
terior confidence is a function of prior confidence. His meth-
ods were not accepted for most statistical analyses because 
statisticians could not agree on a prior confidence. Bayes’ 
theorem is ideally suited to the analysis of quantitative traits, 
however, because Wright’s (1922) relationship matrix pro-
vides an ideal informative prior for genetic merit. For traits 
that are affected by many genes, Wright’s informative prior 
may be the easiest part of the analysis on which to agree. 

Prior information refers to the mean and variance as-
sumed for the unknowns. Estimates that include prior informa-
tion are computed as weighted means of the prior mean and 
the data mean (Gianola and Fernando, 1986). Programs that 
compute estimates using weighted least squares can be ma-
nipulated to include prior information by adding prior ob-
servations to the dataset (Harville, 1986). An observed value 
of 0 is added for each random effect and weighted by the ratio 
of error to random effect variance; i.e., each random effect 
belongs to some population of random effects with a mean of 
0 and known variance, and this approach converts the fixed 
model into a mixed model. For related animals, differences 
between progeny and parent breeding values have an expecta-
tion of 0 and known variance. The prior distribution may be 
viewed as a separate source of information to be combined. 

To include information from all data, researchers could 
use approximate methods instead of exchanging their separate 
datasets and computing an exact analysis. Each could treat the 
separate EBV and REL as the data to analyze and determine 
how much weight each EBV should receive in the combined 
EBV by calculating expected variances and covariances from 
the separate REL. The combined EBV would have higher 
REL than the separate EBV depending on how many observa-
tions were included in each dataset. 

Experimental design is perhaps more important than sta-
tistical analysis, and sophisticated equations cannot compen-
sate for a lack of good data. Freeman (1983) reviewed experi-
ments designed to rank cattle globally and reported, “Applica-
tion of science to cattle breeding was confined initially to im-
provement of breeds within countries ... Then, to make accu-
rate choices of which cattle to import from different countries, 
it is necessary to know the mean merit of cattle in the different 
countries. If this is known, ... the question still remains of how 
well imported cattle can adjust to the environment in the im-
porting country.” He concluded, “The best determination for 
potentially importing cattle into any country is to compare 
imported cattle within the importing country in unbiased com-
parisons and in large enough numbers to be able to draw valid 
conclusions.” 

This global approach to animal breeding that was sug-
gested by Freeman (1983) is now routine. Table 1 lists the 
countries that submitted data for February 2000 evaluations 
that were calculated by the Interbull Centre (Uppsala, Swe-
den), the number of Holstein bulls that were evaluated in each 
country, and the percentages of those bulls with foreign par-
ents or foreign daughters. A parent was considered to be for-
eign if the country code in its preferred Interbull identification 
differed from the code of the country that had submitted the 
bull evaluation. Daughters were considered to be foreign if any 
other country reported an evaluation for the same bull. Many 
(28) of the best bulls from previous years now have daughter 
Table 1. Percentages of bulls with foreign relatives and numbers of 
Holstein and Red and White bulls that were born from 1990 to 1995 
for countries that submitted data to the Interbull Centre (Uppsala,
Sweden) for February 2000 evaluations. 

  Bulls with foreign relatives 

Country Bulls Sires Dams Daughters
 (no.) ------------------(%)------------------
Australia 1365 097 061 24 
Austria 0052 100 069 67 
Belgium1 0355 100 084 68 
Canada1 2297 052 033 21 
Czech Republic 0368 087 080 35 
Denmark1 1964 099 037 02 
Estonia1 0110 091 032 17 
Finland 0214 066 003 00 
France1 3085 096 058 13 
France (Red) 0029 100 097 21 
Germany 4493 090 024 09 
Hungary 0217 093 027 02 
Ireland 0209 >99 100 01 
Israel 0228 054 001 01 
Italy 1546 093 016 07 
New Zealand 1249 078 036 22 
Poland 1218 074 010 <1 
Slovenia 0021 100 033 00 
South Africa 0133 094 056 03 
Spain 0209 100 094 17 
Sweden 0465 097 034 13 
Switzerland 0146 100 012 12 
Switzerland (Red)1 0221 086 022 21 
The Netherlands1 2377 069 041 17 
United Kingdom 0995 099 086 25 
United States1 7943 009 002 08 
1Participant in test of selection index approach. 
evaluations in at least half of the 26 national datasets. Two 
dams (Conant-Acres JY Sweetnes-ET and Eric-Dew Mars 
Marcy) had the most sons (42), and those sons were progeny 
tested in eight and nine different countries, respectively. The 
same genes are now evaluated separately in many countries.  

The objectives of this study were 1) to derive improved 
methods to combine separate evaluations of the same genetic 
effect or of correlated effects, 2) to apply the methods to com-
bine genetic evaluations of yield traits from separate nations, 3) to 
combine evaluations of several correlated traits into a multi-
trait evaluation of longevity, and 4) to unite some of the statis-
tical terms and concepts that in the past were stated separately. 

METHODS 

Suppose that two estimates (û1 and û2) of one unknown 
(u) are available. Further suppose that the two estimates were 
obtained by applying BLUP or Bayes’ theorem separately to 
data vectors y1 and y2 such that û1 and û2 are the expected val-
ues of u given the data:  

 
û1 = E(u | y1), and 

 
û2 = E(u | y2). 

 
The two datasets could be from different traits or different 
nations, e.g., and could have some correlated errors or be 
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completely independent. In either case, the two datasets could 
be merged, and then a combined estimate (û1,2) would be ob-
tained as 

 
û1,2 = E(u|y1,y2). 

 
An SI method (Hazel, 1943) also can be used to combine 

information from separate sources (Hanson and Johnson, 
1957). Let the covariances of û1 and û2 with u be in vector c, 
the variance matrix for û1 and û2 be V, and the expected value 
of u be 0. The combined SI estimate (ũ1,2) is then 

 
ũ1,2 = c�V�1[û1 û2]�. 

 
In this case, the two evaluations are combined instead of com-
bining the original data. The SI, BLUP, and Bayesian methods 
can be applied to three or more datasets simply by increasing 
the number or size of the arrays above. 

Statistical methods that combine estimates instead of 
combining data often are referred to as meta-analysis (Abrams 
and Sansó, 1998; Normand, 1999). Meta-analysis has three 
main advantages: 1) original data files are not required, 2) 
time required to compute ũ1,2 is often much less than time re-
quired to compute û1,2, and 3) different datasets may require 
different models and different statistical methods. 

With normally distributed data and priors, only the mean 
and Var(u|y1,y2) are needed to describe completely the poste-
rior distribution, which is also normal. Thus, the SI, BLUP, 
and Bayesian estimates may be identical in theory. Henderson 
(1963) showed that BLUP and SI formulas are equivalent if 
fixed effects are known or if BLUP estimates of the fixed ef-
fects are used to adjust data. An SI is a useful tool for combin-
ing solutions for random effects because the fixed environ-
mental factors already are removed by single-trait BLUP. 
Multitrait estimates of fixed effects may be nearly identical or 
may not be needed. Formulas from BLUP and SI methods will 
differ in practice because elements of c and V often are not 
computed exactly.  

Reliabilities 
Animal breeders use REL as a measure of confidence. For 

û1 and û2, REL are defined as 
 

REL1 = 1 � Var(u|y1)/Var(u), and 

REL2 = 1 � Var(u|y2)/Var(u). 

Exact REL often cannot be computed, but Misztal and Wig-
gans (1988) showed that REL within 1% often can be ob-
tained. Diagonals of V equal Var(u) multiplied by REL. Off-
diagonals of V are more difficult to obtain, especially if y1 and 
y2 are not independent. Elements of c equal diagonals of V 
because covariance of the estimate with the true effect equals 
variance of the estimate (see Van Vleck, 1993). 

Henderson (1973) showed that variance of solutions for 
random effects equals variance of the prior minus variance of 
prediction error variance (PEV). In his notation, the subtrac-
tion was given as G � C22. Thus, prior variance is partitioned 
into variance of the predictions and the prediction errors (es-
timated effects minus true effects). To obtain either PEV or 
REL requires the inverse of the mixed model matrix. Misztal 
and Wiggans (1988) used a series of 3 × 3 approximate in-
verse elements with much less computation. 

Let A be the 3 × 3 relationship matrix for an animal, its 
sire, and its dam. Let D be a diagonal matrix with diagonal 
elements Da, Ds, and Dd that correspond to the same three 
animals. Those diagonals measure the amount of information 
for progeny excluding that received from its parents and in-
formation for parents excluding that received from this prog-
eny. Amount of information was expressed as record equiva-
lents in Misztal and Wiggans (1988), but daughter equivalents 
(DE) (VanRaden and Wiggans, 1991) also can be used. The 
ratio of error to genetic variance was denoted as k for an ani-
mal model and ks for a sire model. Values of ks were calcu-
lated from heritability (h2) as [4 � h2]/h2 by VanRaden and 
Wiggans (1991), but higher or lower ks that match assump-
tions used in computing D can provide equivalent REL. 

Let C be the mixed model coefficient matrix for those 
three animals after absorbing all other effects and all other 
animals. Matrix C can be approximated as 

 
C = D + A�1k. 

 
The formula is approximate because off-diagonals of D are 
assumed to be 0, but information may not really be completely 
independent if, e.g., the dam and progeny both had records in 
the same management group. Let â, ŝ, and d̂ be BLUP solu-
tions for the three animals. Variance of those three solutions is 
obtained as 

 
Var([â ŝ d̂]�) = AVar(u) � C�1Var(e). 

 
Diagonals of A equal 1 plus the inbreeding coefficient of 

each animal. Let F be a diagonal matrix with diagonals equal 
to the square roots of the reciprocals of the diagonals of A. 
Pre- and postmultiplication of A by F converts the numerator 
relationship covariance matrix of Henderson (1973) to the 
relationship correlation matrix of Wright (1922). Similarly, an 
REL matrix (R) for the three animals is obtained by 

 
R = F(A – C�1k)F. 

 
Diagonals of R contain REL for each animal. If none of the 
three animals is inbred, the matrix simplifies to the more fa-
miliar A � C�1k. Those formulas can be used to compute REL 
and also to backsolve for D from released REL for an animal, 
its sire, and its dam. Specific formulas in the case of no in-
breeding are presented in the section “Updated Parent Infor-
mation.” 

Off-diagonals of C�1 were ignored by Misztal and Wig-
gans (1988) and by VanRaden and Wiggans (1991), but those 
off-diagonals actually are very useful. Because the mean of 
genetic merit of parents (PA) equals 0.5(ŝ + d̂), the REL of PA 
(RELPA) should include the covariance of the solutions for sire 
and dam (Rsd):  

 
RELPA = 0.25(RELs + RELd + 2 Rsd). 

 
In the past, Rsd was not available and was assumed to equal 0. 
If the REL of either or both parents is large, Rsd tends to be 
small by comparison. 

Mendelian sampling (MS) is estimated as the difference 
between â and the mean of ŝ and d̂. Thus, the variance of pre-
dicted MS (m̂) can be obtained as 

Var(m̂) = [1 �0.5 �0.5]Var([â ŝ d̂]�)[1 �0.5 �0.5]�. 
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Matrix C also can be used to deregress breeding values or 
to backsolve for independent right-hand-sides (r). Elements of 
r divided by diagonals of D may be better suited to later statis-
tical analysis than daughter yield deviations because of the 
explicit attempt to provide independent information:   

[â  ŝ  d̂]� = C�1r. 

Also, this simple formula can be used to split apart and to re-
combine information from parents and progeny when im-
proved evaluations of either become available. 

Finally, matrix C could be useful in variance estimation. 
The EBV and prediction errors for an animal, its sire, and dam 
may be correlated if estimated from the same dataset, but the 
Mendelian sampling effects for each animal in the population 
are uncorrelated. Because the variance of true MS is diagonal, 
simplified variance estimation may be possible by equating 
the sum of squared MS with its expectation, which involves 
the sum of Var(m̂) given previously.  

Selection 
Mixed model equations from a model that ignores selec-

tion may fully account for selection based only on linear func-
tions of the data. Proof was given by Henderson (1973) at the 
symposium in honor of his major professor, J. L. Lush. The 
proof was later translated into Bayesian terms by Gianola and 
Fernando (1986). They also suggested that posterior estimates 
from one dataset could be used as priors when evaluating the 
next dataset but did not address the problem of separate data-
sets that were previously evaluated independently. 

Actual selection may be based on combined information 
from both datasets. Then, separate analysis of the two datasets 
followed by an approximate multitrait evaluation may not 
fully account for the selection. For example, if the breeders in 
each country selected their animals based on domestic infor-
mation and ignored foreign data, then a combination of sepa-
rate analyses within country would not be biased. If breeding 
stock were selected based on foreign evaluations, the domestic 
evaluations might not account properly for this selection. 

Formally, separate selection on linear functions L1y1 and 
L2y2 might not cause any problems in separate evaluations, but 
joint selection on the linear function L1,2[y �

1
 y �

2
]� may require 

a joint evaluation. Many national evaluations already are, in 
fact, joint evaluations because foreign or international infor-
mation for parents or relatives is included in released national 
estimates. To combine national evaluations properly, re-
searchers need to know which data were included. Foreign 
pedigree and foreign EBV may both be needed to account 
properly for foreign selection.  

International Evaluation 
Multicountry evaluations are now computed routinely for 

bulls using the multitrait, across-country evaluation method 
(MACE) (Schaeffer, 1994). National evaluations are com-
bined into Interbull evaluations by BLUP, but the REL of the 
Interbull evaluations are computed through an SI (Harris and 
Johnson, 1998). Separate progeny from each country provide 
for uncorrelated errors across countries. Colleau et al. (2000) 
presented an approximate BLUP method to combine single-
trait evaluations that also can account for residual covariances. 

Mixed model equations and BLUP can be avoided if each 
country supplies parent evaluations along with the national 

evaluation of each bull. Estimates of MS from each country 
can be combined through an SI and then added to PA on the 
scale of that country (VanRaden et al., 2000). This approach 
can provide MACE evaluations for cows as easily as for bulls. 

Domestic evaluations are not available for many foreign 
parents. If foreign evaluations are converted or combined 
through an SI into MACE evaluations in age order, parent 
information always precedes progeny information. Because 
MS has an expected value of 0 regardless of scale, only the 
regression (or slope) of the conversion formula is needed to 
combine MS estimates. The intercept is needed only for the 
earliest animals with parents that are not included. With this 
approach, no iteration is needed. 

An international relationship matrix is not needed for the 
SI method because domestic evaluations already include in-
formation from all relatives within that country. Information 
from foreign parents and descendants (if any) is added for 
each animal and the animal’s improved evaluation is incorpo-
rated into the evaluations of its domestic descendants. A little 
information is lost because data from descendants in other 
countries do not contribute back to the parents of the animal as 
a result of the order in which the international evaluations are 
computed. 

For each bull or cow, a matrix must be inverted with di-
mensions equal to the number of countries with progeny re-
cords. For 95% of the bulls and perhaps 99% of the cows, only 
a 1 × 1 inversion is needed. To obtain estimates of MS on 26 
national scales, this inverse is premultiplied by a vector of 26 
genetic covariances and postmultiplied by the difference be-
tween the evaluation of the animal and its PA. National PA 
from an animal model could be superior to those from the sire-
maternal grandsire (MGS) model used by the Interbull Centre. 
A closer connection between national and international eval-
uations could result from exchange of either PA or the indi-
vidual evaluations of both sire and dam when the parents are 
from different foreign countries.  

Information Sources 
The PTA from an animal model are weighted means of 

PA for the animal, half of its yield deviation (YD) if present, 
and progeny contribution (PC) (VanRaden and Wiggans, 
1991). Thus, 

PTA = w1PA + w2(YD/2) + w3PC 

where w1, w2, and w3 are weights that sum to 1. The variables 
YD and PC and the exact weights w1, w2, and w3 often are not 
provided with an evaluation. If only PTA and REL of the ani-
mal, its sire, and its dam are provided, the two variables YD 
and PC, which cannot be obtained directly, can be combined 
into an estimate of the merit of the animal that is independent 
of its PA. Similarly, the total DE of the animal (DEa) can be 
obtained and then split into DE from PA (DEPA) and DE from 
progeny and records (Da as defined earlier as a diagonal ele-
ment of D) so that 

 
DEa = DEPA + Da. 

 
The PTA can be split apart and recombined when new infor-
mation becomes available for the parents by using methods 
presented in the section “Updated Parent Information.”  
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Unknown Parents 
Information for some sires and dams must be missing in 

every population because pedigrees do not go back forever. 
For the earliest ancestors, PA is computed from solutions for 
unknown-parent groups for the sire (UNKs) and dam (UNKd). 
Estimates of UNKs and UNKd are assumed to be expressed as 
transmitting ability rather than breeding value. If information 
from either parent is missing, progeny MS is confounded with 
parent deviation from group mean and is not estimated cleanly 
in the animal model. A sire or dam may have been treated as 
known in one dataset and unknown in another but can always 
be treated as known using the phantom parent idea introduced 
by Westell et al. (1988). 

If both parents are unknown but assumed to be noninbred, 
only half the variance of the reported MS is the result of true 
MS, and the other half is the result of parent deviations from 
group mean. If one parent is unknown, two-thirds of the vari-
ance of reported MS is true MS. Estimates of MS that are free 
of missing parent deviations can be obtained by predicting and 
removing actual merits of each missing parent. Let PTAs and 
PTAd be sire and dam PTA, respectively. If PTAs is missing 
and UNKs is reported instead, 

  
PTAs = UNKs + 0.67(PTA ��0.5UNKs � 0.5PTAd). 

 
If PTAd is missing and UNKd is reported instead,  

 
PTAd = UNKd + 0.67(PTA � 0.5PTAs � 0.5UNKd). 

 
If PTAs and PTAd are both missing, 

  
PTAs = UNKs + 0.5(PTA � 0.5UNKs � 0.5UNKd), and 

 
PTAd = UNKd + 0.5(PTA ��0.5UNKs ��0.5UNKd). 

 
An unknown parent contributes no information to its 

known progeny, but REL for an unknown parent is greater 
than 0 because the known progeny contributes information 
about the parent. Formulas to obtain REL for unknown parents 
are presented in the section “Updated Parent Information.”  

Updated Parent Information 
The PTA of an animal and its REL (RELa) may change if 

new information is received for the sire or dam. Suppose that 
updated and previous REL are available for the sire (RELs), 
dam (RELd) and, consequently, RELPA. Although DEa, DEPA, 
and Da usually are not reported, those variables can be back-
solved from RELa and RELPA by algebra similar to that of 
Misztal and Wiggans (1988) and VanRaden and Wiggans 
(1991). Reduced REL that exclude the contribution of the 
animal also are needed for the sire (RELs�a) and dam (RELd�a), 
but to begin iteration, RELs�a can be set equal to RELs, and 
RELd�a can be set equal to RELd. 

The following steps can be used to iterate for DE begin-
ning with either single- or multitrait REL. First, the REL con-
tributed by this animal to its sire (RELsa) and dam (RELda) are 
used to compute the analogous DE contributed by the animal 
to its sire (DEsa) and dam (DEda): 

RELsa = RELa/(4 � RELa RELd�a), 

RELda = RELa/(4 � RELa RELs�a), 
 

DEsa = ksRELsa/(1 � RELsa), and 
 

DEda = ksRELda/(1 � RELda). 
 
New estimates of DE of parents that exclude DE contrib-

uted by the animal are obtained for the sire (DEs�a) and dam 
(DEd�a) by subtracting DEsa and DEda from the known total 
DE of sire (DEs) and dam (DEd):  
 

DEs�a = DEs � DEsa, and 
 

DEd�a = DEd � DEda. 
 

The DEs�a and DEd�a are used to compute RELs�a and 
RELd�a:  
 

RELs�a = DEs�a/(DEs�a + ks), and 
 

RELd�a = DEd�a/(DEd�a + ks). 
 

From those REL, the REL and DE for PA are computed 
with contributions of the animal to its parents excluded: 
RELPA�a and DEPA�a. Then Da is obtained by subtracting 
DEPA�a from DEa:  
 

RELPA�a = (RELs�a + RELd�a)/4, 
 

DEPA�a = ksRELPA�a/(1 � RELPA�a), and 
 

Da = DEa � DEPA�a. 
 

When new information becomes available for one or both 
parents, updated DEa (DE +

a ) and updated RELa (REL+
a) may not 

be available but must be computed instead. Changes in parent 
REL have no effect on Da. Thus, the previous equation can be 
rearranged to obtain DE +

a  instead by summing the updated 
DEPA (DE+

PA) and a converged estimate of Da obtained from 
RELa, RELs, and RELd:  
 

DE +
a  = DE+

PA + Da, and 

REL+
a  = DE +

a /(DE +
a  + ks). 

 
If the REL of either parent is 0, the parent evaluation is 

assumed to be the solution for an unknown-parent group in-
stead of a PTA. If either the sire or dam is unknown, their total 
DE are not available. Instead, the reported REL of 0 for un-
known parents indicates that the parent DE with the contribu-
tion of the animal excluded is 0. True REL for an unknown 
parent is >0 because data are available for one of its descen-
dants. For unknown parents, REL with the contribution of the 
animal excluded are 0 because such parents contribute no new 
information back to the animal. Thus, DEs is set equal to DEsa, 
and DEd is set equal to DEda if the reported REL of the parent 
is 0. 

After the DE and REL equations converge, an updated 
PTA (PTA+) can be obtained from the original PTA of the 
animal and the difference between its updated PA (PA+) and 
original PA. If neither the animal, its sire, nor its dam is in-
bred, this adjustment is 
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PTA+ = PTA + (PA+ � PA)[2ks/(2ks + Da)]. 
 

This formula is obtained from the first row of matrix C. The 
right-hand-side vector r for the animal is free of parent contri-
butions and is not affected by new information on the merit of 
parents. Because the first element of r is a constant, the first 
row of C multiplied by the original evaluations of the animal, 
its sire, and its dam must equal the first row of C multiplied by 
their updated evaluations.  

Updated Progeny Information 
The PTA and REL of an animal also change as more 

progeny information becomes available. This new information 
also could cause small changes to the evaluations of the par-
ents of the animal (grandparents of the progeny) or more dis-
tant ancestors. Often, REL of sire and MGS are already 99% 
when grandprogeny data arrive, which leaves little room for 
improved accuracy of sire and MGS evaluations. Evaluations 
of dams could improve because REL for dams often are 
<60%. Larger changes would occur for solutions for un-
known-parent groups because a new grandprogeny record 
could be the only source of information. For simplicity, the 
PA could be assumed to be constant and the new progeny data 
to be used only to update the estimated MS of the animal. Al-
ternatively, an SI could be applied to update PA and animal 
MS simultaneously. 

Regressed MS results in simpler SI formulas, whereas de-
regressed MS results in simpler mixed model equations. Sup-
pose two separate BLUP predictions of MS (û1 and û2) are 
available: 

 
û1 = PTA1 � PA1, and 

 
û2 = PTA2 � PA2. 

 
Variances of the two predictions (diagonals of variance 

matrix V) are less than the variance of PTA because of the 
subtraction of PA: 

 
Var(û1) = (REL1 � RELPA1)Var(TA), and 

 
Var(û2) = (REL2 � RELPA2)Var(TA), 

 
where TA = true transmitting ability. Vector c, the covariance 
of the two predictions with true MS (u), is easy to obtain be-
cause covariance of predictions and true effects equals vari-
ance of predictions:  

 
Cov(û1, u) = Var(û1), and 

 
Cov(û2, u) = Var(û2). 

 
Off-diagonals of V are approximated with algebra similar 

to that of Weigel et al. (1998) and Harris and Johnson (1998). 
The main difference is the use of MS instead of PTA as data. 
Also, û1 and û2 are assumed to estimate the same trait u; for-
mula changes for multiple traits are shown in the section “Cor-
related Traits.” If û1 and û2 are obtained from completely in-
dependent sets of progeny, then 

 
Cov(û1, û2) = Var(û1)Var(û2)/Var(u). 

 

If the two sets of progeny are not independent, a constant 
d is introduced to account for their correlation as in Weigel et 
al. (1998). This constant depends on Da for each estimate (Da1, 
Da2), the number of DE in common (Da1,2), and the variance 
ratio k. Because a genetic correlation of 1, equal heritabilities, 
and equal error variances are assumed for the single trait in the 
two progeny datasets: 

 
d = 1 + kDa1,2/(Da1Da2). 

 
The constant d is multiplied by Cov(û1, û2) for independent 
progeny sets to account for lack of independence between 
progeny sets:  

 
Cov(û1, û2) = dVar(û1)Var(û2)/Var(u). 

 
Note that d would have been 1 if the progeny sets had been 
independent because Da1,2 would have been 0; therefore, the 
formula for Cov(û1, û2) for data with correlated errors reduces 
to the formula for independent data. 

Weigel et al. (1998) presented covariance formulas equiv-
alent to those equations except that estimates of true transmit-
ting abilities were combined instead of estimates of MS. Har-
ris and Johnson (1998) presented formulas equivalent to the 
Cov(û1, û2) formula for independent data except that they con-
sidered genetic correlations of <1, which is addressed in the 
section “Correlated Traits.”  

Correlated Traits 
The predictions û1 and û2 may be estimates of correlated 

traits (u1 and u2) instead of the same trait (u). Most formulas of 
the previous section remain unchanged, but a few formulas 
must be modified to account for correlations of <1. Covari-
ance of the two true effects (g12) replaces Var(u). The ratio of 
error covariance to genetic covariance for the two traits (c1,2) 
and the constant d are obtained from the h2 of the two traits 
(h2

1, h2
2), their phenotypic correlation, and their genetic correla-

tion:  
 

c1,2 = 4[Corr(y1, y2)/(h2
1h2

2)
0.5] � Corr(u1, u2), and 

 
d = Corr(u1, u2) + c1,2Da1,2/Da1Da2. 

 
Harris and Johnson (1998) tested a similar SI procedure to 

compute REL of MACE evaluations. For this case, no daugh-
ters are tested for both traits; therefore, Da1,2 = 0, and the for-
mula is simpler. Their estimated REL were correlated to true 
REL by 0.99 and were higher on average by only 1%. 

With more than two traits, subsets of the traits may al-
ready have been evaluated with multitrait methods. For exam-
ple, multitrait PTA for milk, fat, and protein may account for 
correlations within that subset of traits, and PTA for type traits 
may account for correlations within the type traits; however, 
correlations among the two subsets of traits were ignored. For 
any two traits included in the same multitrait system of equa-
tions, covariance of the estimate for trait i and the true MS for 
trait j is set equal to the covariance of the estimates for traits i 
and j. This causes elements of c and V�1 to cancel so that PTA 
are not updated for correlations with other traits that already 
were included in a multitrait analysis.  
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Table 2. Comparison of single-trait and multitrait evaluations of productive life. 
     Mean PTA  Mean reliability 
Evaluation 
method 

 
Breed 

 
Gender 

Birth year or 
animal status 

Evaluation
year 

Single-
trait 

Multi-
trait 

 Single-
trait 

Multi-
trait 

     --------(mo)-------  --------(%)--------
Previous SI1,2 Holstein Bulls 1989 through 1990 1994 0.83 1.19  50 53 
MACE3,4 Holstein Bulls 1989 1996 0.83 1.00  54 73 
New SI Jersey Bulls 1990 through 1995 1999 0.66 0.62  52 58 
   Active AI 1999 1.69 2.12  53 63 
 Holstein Bulls 1990 through 1995 2000 0.60 0.50  58 65 
   Active AI 2000 0.85 1.10  56 66 
  Cows 1995 through 1997 2000 0.61 0.66  28 31 
   Elite 2000 1.36 1.58  33 39 
1Selection index. 
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DATA 
ata 

 national evaluation centers listed in Table 1 
d dam evaluations and sire and dam REL for 
were included in February 2000 Interbull 

 Interbull Centre supplied the national input 
ruary 2000 and applied the current MACE 
ight-country subset. Bull evaluations for the 
ere then computed by the new SI method to 
ences for protein yield. A few bulls were not 
SI approach because of missing sire or dam 
EL. Comparisons of the two approaches in-
lls that had data in the same number of coun-
nd BLUP.  

it Data 
valuations for PL, yield, SCS, and composite 
mbined into multitrait PL beginning with Au-
ations. Since July 1994, PL, yield, and type 
 been combined into multitrait PL evaluations 
998) by Holstein Association USA (Brattle-
alculations can now be moved to the Animal 

rograms Laboratory (AIPL), ARS, USDA 
, because Holstein composite traits will be 
fore release day for use in computing the net 
e composite trait evaluations are actually 

tions and include correlated information from 
ut not from yield, PL, or SCS. 

grams based on the methods of Weigel et al. 
lied to both bull and cow evaluations. Major 
 the previous SI programs used by Holstein 
 are that PTA for SCS are included in predic-
dictions of PL begin with PA for PL and only 
r information from correlated traits of prog-

rences are that the udder composite, foot and 
nd body size composite are used in predic-
all 17 individual linear traits. Also, all three 
, fat, and protein) are used in predictions in-
raits (milk and fat) used previously.  

RESULTS 

esults 
,414 Holstein bulls from eight countries, 
ns using the SI procedure required 1.5 min of 

computation for each trait (milk, fat, and protein yields). Cor-
relations between SI and BLUP protein evaluations of bulls 
ranged from 0.989 to 0.993 on the eight-country scales. The SI 
evaluations were more consistent across countries; correla-
tions for all country pairs ranged from 0.994 to 0.999 as com-
pared with correlations of 0.987 to 0.996 with BLUP. The use 
of a linear regression across time instead of estimation of 
separate unknown-maternal granddam groups within time pe-
riods could explain this difference. 

Bull REL from the SI approach were higher than Interbull 
REL by a mean of 6%, and REL from the two methods were 
correlated by only 0.908 to 0.977 on the eight-country scales. 
As a test of differences, dam REL was limited to a maximum 
of 25%, which would have been the maximum possible if 
MGS REL had been used as a substitute for dam REL. Mean 
difference in REL declined to about 3%; correlations in-
creased greatly and ranged from 0.977 to 0.993. As another 
test, conversion formulas were applied to bulls evaluated in 
only one country, and an SI was applied to bulls evaluated in 
multiple countries. The converted REL (foreign REL multi-
plied by genetic correlation squared) were closer than SI REL 
to official REL. Mean difference between converted and offi-
cial bull REL was 3% when dam REL was included and <1% 
when dam REL was limited to 25%. 

Simple conversion formulas gave nearly the same evalua-
tions as the SI method for most bulls. Advantages for an SI are 
greatest when two or more countries each provide evaluations 
with moderate REL. Some other differences among conver-
sion formulas, SI, and BLUP may deserve further investiga-
tion, but use of either conversion formulas or the SI approach 
to provide combined international evaluations for cows seems 
feasible. Combined cow evaluations could be provided but 
would require minimum standards for publication, and the 
rankings provided would be less accurate than for progeny-
tested bulls.  

Correlated Trait Results 
Evaluations for PL from single-trait and approximate 

multitrait procedures are compared in Table 2. The gain in 
REL from the new SI procedure is higher than from the previ-
ous SI method (Weigel et al., 1998) and is closer to the REL 
from MACE reported by Weigel (1996). The REL from 
MACE reported by Weigel (1996) could be too large because 
the correlated traits were assumed to be from independent 
daughters instead of from the same daughters as for PL. The 

2Weigel et al., 1998. 
3Multitrait, across-country evaluation. 
4Weigel, 1996. 
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previous SI programs for PL did consider the covariances 
among traits measured on the same daughters but used regres-
sion on PTA without removing parent contribution. The REL 
from this approach was lower because the indirect evaluations 
of parents replaced their direct evaluations whenever indirect 
traits of daughters were included. The MACE approach uses 
the direct pedigree index and regression of the bull to adjust 
for the difference of the correlated traits from pedigree index. 
The new SI programs use PA instead of the pedigree index 
and then apply regressions to the MS.  

For bulls in active AI service, multitrait PTA for PL were 
higher than single-trait PTA as expected. However, for all 
bulls and cows, little difference was found in mean PTA be-
tween single- and multitrait evaluations. For the new SI 
method, single-trait and multitrait PTA were correlated by 
0.85; the corresponding correlation for the previous SI method 
was 0.95. The previous multitrait PTA were correlated by only 
0.88 to the new multitrait PTA. Those correlations are consis-
tent with the larger gains in REL from the new SI procedure. 
With the previous SI approach, any use of indirect PL for 
daughters also forced the use of indirect PL for the parents. 
This use of indirect PL for parents limited the gain in bull 
REL because most sires had a direct REL of 99%, whereas 
their indirect REL might have been only 60%. 

Because conformation traits and SCS are missing for 
some relatives, the new programs were also tested for upgrad-
ing single-trait PTA for SCS and udder composite to multitrait 
PTA using correlated information from all other traits. For 
bulls, the mean REL increased only from 68.6 to 68.9% for 
SCS and from 77.9 to 78.1% for udder composite. For cows, 
REL went from 32.8 to 33.2% for SCS and from 30.0 to 
31.6% for udder composite. The small gains in evaluation 
accuracy for those traits did not justify the added computing 
complexity and disk storage that would be required for routine 
evaluations. Except for PL, a multitrait evaluation for any trait 
was computed only when an animal had no records and no 
progeny and, therefore, no single-trait evaluation for that trait. 
Comparisons in Table 2 reflect genetic correlations used for 
August 2000 computations rather than the revised genetic cor-
relation matrix used in November 2000. Advantages of the 
new methods were less in subsequent evaluations when ge-
netic correlations were reduced. 

The time required to obtain PA for the eight traits, to es-
timate MS for PL from MS of correlated traits, to adjust prog-
eny PTA for PL for multitrait PTA of parents, and to compute 
net merit for all bulls and cows was 17 h. Evaluations of all 
eight traits were loaded into memory at the start of the pro-
gram because disk access to parent evaluations was too slow 
(nearly 3 d). All of those steps were completed in one pass of 
the data that were ordered by age of the animals, but the SI 
method also can be applied to upgrade single-trait to multitrait 
evaluations for each animal separately.  

CONCLUSIONS 

An SI is a simple and accurate method to combine infor-
mation from separate sources. For any number of traits, single-
trait evaluations can be combined into multitrait evaluations. 
When estimates of MS are used as the data source, environ-
mental effects and genetic trend already are removed and thus 
few fixed effects need to be estimated. The matrices used in a 
SI approach are smaller than those used in BLUP if the data 

vector is shorter than the solution vector. In MACE, solutions 
may be needed for 25 or more nations even though most bulls 
have progeny in just one country. 

Methods to combine national evaluations using sire and 
dam information with an SI method were compared with cur-
rent procedures that use sire and MGS information with BLUP 
procedures. Differences were fairly small, and correlations 
were about 0.99 for the scale of each country. Bull REL that 
included dam contribution instead of only MGS information 
were higher and should agree more closely with national REL 
from animal models. 

The SI approach could be used to provide MACE evalua-
tions for cows and could provide a closer connection between 
national and international evaluations. The current BLUP 
model includes information from foreign daughters but ex-
cludes information from foreign dams. However, many more 
bulls have foreign dams than foreign daughters. A MACE 
evaluation system for cows would allow foreign information 
to be transferred among the national evaluations without rely-
ing on a single international animal model. In either case, cen-
tralized processing of female evaluations by Interbull should 
be more efficient than two-way exchange of data files between 
each of the national centers. 

Multitrait evaluations of longevity for US bulls and cows 
were improved through a new SI method. Gains in REL were 
larger than for the previous SI method because the new ap-
proach could include both the direct PL evaluations of parents 
and the correlated traits from progeny and the records of the 
animal. 

The SI method is approximate and may not account for 
the effects of selection as precisely as a combined analysis of 
all data. If separate datasets are combined, more uniform sta-
tistical methods can be applied. If data are analyzed separately 
and then results combined, different models that are better 
adapted to the needs of each trait or country can be applied. 
Both methods can include information from several sources 
instead of just one. Meta-analysis and approximate methods 
are useful if exact methods to combine all data are difficult.  
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