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ABSTRACT

Estimates of heritability within herd (h2
WH) that were

generated with daughter–dam regression, daughter–
sire regression, and REML were compared, and effects
of adjusting lactation records for within-herd heritabil-
ity on genetic evaluations were evaluated. Holstein re-
cords for milk, fat, and protein yields and somatic cell
score (SCS) from the USDA national database repre-
sented herds in the US Northeast, Southeast, Midwest,
and West. Four data subsets (457 to 499 herds) were
randomly selected, and a large-herd subset included
the 15 largest herds from the West and 10 largest herds
from other regions. Subset heritabilities for yield and
SCS were estimated assuming a regression model that
included fixed covariates for effects of dam yield or SCS,
sire predicted transmitting ability (PTA) for yield or
SCS, herd-year-season of calving, and age within par-
ity. Dam records and sire PTA were nested within herd
as random covariates to generate within-herd heritabil-
ity estimates that were regressed toward mean h2

WH for
the random subset. Heritabilities were estimated with
REML using sire models (REMLSIRE), sire–maternal
grandsire models (REMLMGS), and animal models (RE-
MLANIM) for each herd individually in the large-herd
subset. Phenotypic variance for each herd was esti-
mated from herd residual variance after adjusting for
effects of year-season and age within parity. Deviations
from herd-year-season mean were standardized to con-
stant genetic variance across herds, and records were
weighted according to estimated error variance to ac-
commodate h2

WH when estimating breeding values.
Mean h2

WH tended to be higher with daughter–dam re-
gression (0.35 for milk yield) than with daughter–sire
regression (0.24 for milk yield). Heritability estimates
varied widely across herds (0.04 to 0.67 for milk yield
estimated with daughter–dam regression), and h2

WH de-
viated from subset means more for large herds than for
small herds. Correlation with REMLANIM h2

WH was 0.68
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for daughter–dam and was 0.45 for daughter–sire
h2

WH for milk yield. The correlation between daughter–
sire h2

WH and REMLMGS was greater than the correlation
between daughter–dam h2

WH and REMLMGS. Data ad-
justments had a minimal impact on breeding value bias.
Within-herd heritability can be estimated rapidly using
regression techniques with moderate accuracy, but ad-
justing lactation records for h2

WH resulted in only a small
improvement in the accuracy of genetic evaluations.
Key words: heritability, daughter–dam regression,
daughter–sire regression

INTRODUCTION

Genetic evaluations for most traits assume that heri-
tability is constant across herds within a breed. How-
ever, management and environmental factors that vary
across herds could result in different heritabilities. In
addition, the accuracy of records that contribute to ge-
netic evaluations varies across herds. Inaccurate par-
ent identification reduces heritability estimates and
PTA accuracy (Gelderman et al., 1986; Banos et al.,
2001). Herd characteristics that may not directly influ-
ence data accuracy, such as larger herd size or higher
maximum monthly temperature, also were associated
with lower heritability estimates in an across-country
study (Zwald et al., 2003). The herd characteristics that
have received the most attention for their relationship
to heritability are mean yield and yield variance. Heri-
tability estimates typically increase as mean herd yield
and herd phenotypic variance increase (Lofgren et al.,
1985; Vinson, 1987; Van Tassell et al., 1999).

Herd-year heritability for yield is assumed to in-
crease when the standard deviation (SD) for phenotype
increases (Wiggans and VanRaden, 1991) and is con-
strained to range from 0.25 to 0.35 in the US genetic
evaluation of Holsteins (Van Tassell et al., 1999).
Within-herd heritability is accounted for by standardiz-
ing yield to a constant genetic SD prior to generating
EBV and weighted by the ratio of base error variance
to herd error variance while generating EBV (Wiggans
and VanRaden, 1991). Final type scores are standard-
ized to a constant phenotypic variance to account for
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reduced variance as the herd mean type score increases,
but herd heritability is not assumed to vary (Weigel
and Lawlor, 1994).

Efforts to standardize records to constant genetic or
phenotypic variance have resulted in improvements in
the accuracy of sire PTA (Wiggans and VanRaden,
1991; Powell et al., 1994; van der Werf et al., 1994;
Weigel and Lawlor, 1994). The use of direct estimates
of within-herd heritability (h2

WH) may be more precise
than heritability inferred from herd variance. Estimat-
ing a separate heritability for a large number of herds
on a routine basis using REML is not feasible, and
heritability estimates are not accurate for small data
sets (Falconer and Mackay, 1996). Alternatively, re-
gression techniques could be used that are computa-
tionally feasible. Within-herd heritability could be re-
gressed toward the mean for small herds that lack suf-
ficient data to estimate h2

WH accurately. Daughter–dam
regression and paternal half-sibling correlations can be
used to derive heritability (Falconer and Mackay, 1996),
and both are based on sources of pedigree information
that are recorded to some extent in nearly all herds.

Most herds have too few paternal half-siblings to esti-
mate heritability directly from half-sibling correlations.
Regressions on sire PTA, which are generated primarily
with half-sibling records, give some indication of genetic
variation and could be used to infer herd heritability.
In a comparison of grazing and confinement herds in
the United States, genetic variance in the grazing herds
was estimated to be 62 to 87% lower than in confine-
ment herds (Kearney et al., 2004). Regression of ma-
ture-equivalent (ME) milk on sire PTA for milk was
correspondingly lower in grazing herds (0.78) than in
the confinement herds (0.99).

The objectives of this study were 1) to estimate
h2

WH rapidly and accurately using regression tech-
niques, 2) to evaluate h2

WH differences and factors that
contribute to those differences, and 3) to evaluate the
effect on genetic evaluation accuracy when using h2

WH
to standardize records across herds to constant genetic
variance and to weight records according to estimated
error variance.

MATERIALS AND METHODS

Data

Mature-equivalent milk, fat, and protein yields and
mean SCS records from first- through fifth-parity Hol-
stein cows that had calved between January 1997 and
June 2004 were obtained from the USDA national lacta-
tion database for selected states that represented 4 re-
gions: West (California), Midwest (Wisconsin), North-
east (New York and Pennsylvania), and Southeast (Ala-
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bama, Arkansas, Florida, Georgia, Louisiana,
Mississippi, North Carolina, Oklahoma, South Caro-
lina, Tennessee, and Texas). Four data subsets were
created to provide replication across multiple samples
and to analyze a large number of herds within computa-
tional limits. The 4 subsets were created by randomly
selecting herds across regions. A fifth subset was cre-
ated by selecting the largest herds from the 4 original
subsets: the 10 largest herds from the Northeast, South-
east, and Midwest regions and the 15 largest herds
from the West. Herd size in the large-herd subset
ranged from 1,076 lactation records from 671 cows to
19,856 lactation records from 9,497 cows.

All cows were required to have either a dam from the
same herd or a sire with an official genetic evaluation.
Dams were required to be from the same herd because
heritability estimates were intended to reflect h2

WH and
not the general population heritability. A minimum of
4,500 kg of ME milk was required, and records from
second and later parities were retained only if a first-
parity record was available. Contemporary groups were
similar to those used in national genetic evaluations.
Herd-year-seasons of calving were 6 bimonthly calving
seasons. For herd-year-seasons with <5 cows, seasons
were expanded to 4-mo intervals. Herd-year was substi-
tuted for herd-year-season if <5 cows were in the herd-
year-season after expanding the season length; herd-
years with <5 cows were excluded. Of the original re-
cords across subsets, 24% were removed because of ad-
ditional data edits.

The numbers of records, cows, daughter–dam pairs,
sires, and herds for each data subset are shown in Table
1. Data subsets ranged from 206,766 to 290,544 records.
Percentages of cows with a dam record from the same
herd ranged from 55 to 59% (large-herd subset). The
mean number of records by region ranged from 51,469
(Midwest) to 72,306 (West).

REML Estimates for h2
WH

Restricted maximum likelihood heritability esti-
mates were generated for the 45 large herds by using
sire models (REMLSIRE), sire–maternal grandsire mod-
els (REMLMGS), and animal models (REMLANIM). Heri-
tability estimates were generated for each herd individ-
ually, resulting in 135 individual herd analyses (45
from each model) for each trait. Heritability for each
herd was estimated by AS-REML (Gilmour et al., 2002)
with the following model:

y = XB + Zu + Wp + e, [1]

where y is a vector of ME milk, fat, or protein yields
or SCS, X is the incidence matrix for fixed effects, B is
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Table 1. Overall numbers of records, cows, daughter–dam pairs, sires, and herds and regional numbers of records by data subset

Regional1 records
Daughter–

Subset Records Cows dam pairs Sires Herds Midwest Northeast Southeast West

(no.)
1 213,913 103,229 59,437 4,200 457 58,764 61,585 42,159 51,405
2 290,544 138,519 80,721 4,672 490 59,926 61,924 74,079 94,615
3 215,369 103,083 56,689 3,846 499 60,114 52,433 61,917 40,905
4 233,341 111,653 63,672 3,849 493 57,088 55,459 54,076 66,718
Large herds 206,766 100,693 59,518 3,979 45 21,455 33,812 43,611 107,888

1West = California; Midwest = Wisconsin; Northeast = New York and Pennsylvania; and Southeast = Alabama, Arkansas, Florida, Georgia,
Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, and Texas.

a vector of fixed effects (age within parity and year-
season of calving), Z is the incidence matrix for additive
pedigree (animal, sire, or sire + MGS), u is a vector of
random pedigree effects, W is the incidence matrix for
permanent environmental effects, p is a vector of ran-
dom permanent environmental effects, and e is a vector
of random residuals.

Daughter–Dam and Daughter–Sire Estimates for h2
WH

The h2
WH for milk, fat, and protein yields and SCS

were estimated with daughter–dam and daughter–sire
regressions. Dam records were the residuals from the
following model:

yij = biAi + Hj + eij [2]

where y is ME milk, fat, or protein yield or SCS for
parity i of cow in year-season j; bi is the coefficient for
fixed regression on age nested within parity (A), H is
a fixed effect of year-season, and e is the effect of the
random residual. The analysis was applied to each herd
individually, which was computationally feasible and
easily accommodated with the MIXED procedure of
SAS (SAS Institute, 2000). Daughter ME milk, fat, and
protein yields and SCS were then regressed on the cor-
responding dam record. Daughter–dam and daughter–
sire regressions were conducted simultaneously. This
procedure required no missing values to make use of
all available dam records when sire PTA was missing,
or to make use of sire PTA when dam records were
missing. Sire PTA and dam records were averaged for
each herd-year-season and included for cows with miss-
ing values.

Regression models to estimate h2
WH included fixed re-

gression coefficients to estimate mean heritability for
each data subset. An additional random coefficient
nested within herd allowed the calculation of h2

WH esti-
mates that were regressed toward the subset mean.
The model for estimating heritabilities in AS-REML
(Gilmour et al., 2002) was
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yijkl = biAi + Hj + b2D + b3S + b4(S × SDk) [3]

+ b1lFl + b2lGl + eijkl

where y is ME milk, fat, or protein yield or SCS for
parity i of cow in herd l, herd-year k, and herd-year-
season j; bi is a coefficient for fixed regression on age
(A) nested within parity i; H is a fixed effect of herd-
year-season; b2 is a coefficient for fixed regression on
dam record (D); b3 is a coefficient for fixed regression
on sire PTA (S); b4 is a coefficient for fixed regression
on the interaction between sire PTA and herd-year SD
for yield or SCS; b1l is a coefficient for random regression
on dam record nested within herd (F); b2l is a coefficient
for random regression on sire PTA nested within herd
(G); and e is an effect of the random residual. An analy-
sis of milk yield without regression on fixed effects [b2D,
b3S, and b4(S × SDk)] was also performed to determine
the effect of deviating from an overall fixed regres-
sion coefficient.

Herd phenotypic variance estimates (and herd-year
SD) were derived using residual variance for each herd
from model [2]. Residual variances from current, previ-
ous, and subsequent herd-years and mean residual
variance for the data subset were weighted according
to the procedures of Wiggans and VanRaden (1991) to
estimate herd-year phenotypic variance that was re-
gressed toward the subset mean with the following
formula:

σ̂2
HY =

20 × σ2
S + NHY × σ2

HY +
1
2 NHY−1 × σ2

HY−1 +
1
2 NHY+1 × σ2

HY+1

20 + NHY +
1
2 NHY−1 +

1
2 NHY+1

,

where σ̂2
HY is the phenotypic variance estimate for the

current herd-year, σ2
S is the average residual variance

(eij) from model [2] for j herd-year seasons in the current
year, σ2

HY is eij in the current year, σ2
HY−1 is eij for the

previous year, σ2
HY+1 is eij in the subsequent year, NHY
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are the degrees of freedom for the current year, NHY−1
are the degrees of freedom for the previous year, and
NHY+1 are the degrees of freedom for the subsequent
year. The degrees of freedom were assumed to be the
number of records minus 1. Weights derived from the
inverse of standard errors could replace degrees of free-
dom, but that approach was not examined in this study.

The h2
WH from the daughter–dam regression was 2(b2

+ bll). To estimate h2
WH from the daughter–sire regres-

sion, the additive genetic SD for the herd was first
assumed to be

[b3 + b4(SDk) + b2l]SDUS,

where SDUS is the genetic SD assumed for USDA-DHIA
Holstein genetic evaluations (755 kg for ME milk).
Thus, a herd with

b3 + b4SDk + b6 = 2

was assumed to have twice the genetic SD of the general
population. The h2

WH from daughter–sire regression was
herd additive genetic variance divided by σ̂2

HY. Because
σ̂2

HY was used in the analysis of daughter–sire regres-
sions, h2

WH heritability could vary each year for daugh-
ter–sire regression. Midparent h2

WH was the mean of
h2

WH from daughter–dam and daughter–sire re-
gressions.

The relationship between h2
WH and herd parameters

that could be indicators of h2
WH was assessed with a

multiple regression model in the GLM procedure of SAS
(SAS Institute, 2000) with h2

WH as the dependent vari-
able. Independent variables included region (Califor-
nia, Northeast, Southeast, Wisconsin), average number
of first-lactation animals calving per year within region,
percentage of cows identified by a registration number,
average age at first calving, herd average yield or SCS,
and herd phenotypic SD of yield or SCS.

Data Adjustment

Animal-model EBV were generated with BLUPF90
(Misztal, 2004) with and without adjustment for h2

WH

with methods similar to those of Wiggans and VanRa-
den (1991). The model to estimate breeding values was
similar to model [1]. The only difference was that EBV
were generated with records from all herds in a subset,
so year-season was replaced with herd-year-season and
only animal was considered as a pedigree effect.

Records were standardized to constant genetic vari-
ance prior to estimation of breeding values, whereas
error variance differences among herds were accommo-
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dated by weighting records simultaneously with esti-
mation of breeding values. Genetic and permanent en-
vironmental variances were identical to those used in
national genetic evaluations, which are based on as-
sumed heritabilities of 0.30 and repeatabilities 0.55 for
yield traits (Van Tassell et al., 1999) and 0.10 and 0.35,
respectively, for SCS (Schutz, 1994). Estimates of
h2

WH for yield were constrained to a range between 0.10
and 0.50 before adjusting for h2

WH. Heritability con-
straints were made to prevent overextrapolation and
because negative weights would have been obtained if
herd heritability had been allowed to be greater than
the assumed repeatability.

Daughter milk, fat, and protein yields and SCS were
deviated from herd-year-season means for those traits.
Resulting deviations were multiplied by the ratio of
SDUS to herd additive genetic SD. Changes in error
variance were accommodated by weighting records with
the ratio of error variance for national genetic evalua-
tions to estimated error variance after adjusting for
herd additive genetic SD (Wiggans and VanRaden,
1991).

Tests of Data Adjustments

Methods derived by van der Werf et al. (1994) and
Reverter et al. (1994) to detect bias in genetic parameter
estimates were adapted to determine the effect of data
adjustments. The methods rely on comparisons of EBV
in subsequent genetic evaluations. For each data sub-
set, EBV were first generated only with records from
cows calving in 2000 and earlier (EBV2000) and second
with the complete data subset (EBV2004). Data adjust-
ments for EBV2000 were based on h2

WH generated with
records from calvings in 2000 and earlier. The EBV
from sires that entered a young sire program between
July 1995 and July 1997 were selected to evaluate the
effects of data adjustments. Sires were required to have
1) daughters that calved in multiple herds by 2000 or
earlier, 2) daughters in at least one additional herd
after 2000, 3) a reliability for EBV2000 of at least 50%
for yield or 35% for SCS, and 4) a reliability for
EBV2004 of at least 80% for yield or 60% for SCS. The
EBV2000 for sires that entered AI in this time period
would be derived from first-crop daughters, whereas
EBV2004 would include second-crop daughters. The ef-
fect of data adjustments on bias attributable to factors
such as preferential treatment of daughters sired by
elite proven bulls can then be detected.

The EBV2004 were regressed on EBV2000, and fluc-
tuations in EBV were compared across subsequent ge-
netic evaluations to determine the effects of data adjust-
ments. van der Werf et al. (1994) obtained an observed
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Table 2. Mean within-herd h2 (diagonal) for milk yield for daughter–dam and daughter–sire regressions,
midparent,1 REMLSIRE,2 REMLMGS,3 and REMLANIM

4 and correlations (above diagonal) among h2 for 45
large herds

Daughter– Daughter–
Item dam sire Midparent REMLSIRE REMLMGS REMLANIM

Daughter–dam 0.32 0.45 0.74 0.31 0.42 0.68
Daughter–sire 0.27 0.93 0.43 0.56 0.45
Midparent 0.29 0.44 0.59 0.61
REMLSIRE 0.19 0.94 0.78
REMLMGS 0.20 0.86
REMLANIM 0.21

1Mean of daughter–dam and daughter–sire h2
WH.

2Heritability estimates derived with sire models in REML.
3Heritability estimates derived with sire–maternal grandsire models in REML.
4Heritability estimates derived with animal models in REML.

genetic variance based on EBV fluctuation with the
following formula:

σ̂2
a = ∑ (EBV2004i − EBV2000i)2/∆r2

i

n ,

where σ̂2
a is observed genetic variance based on fluctua-

tions in genetic evaluations, EBV2004i is EBV2004 for
sire i, EBV2000i is EBV2000 for sire i, ∆r2

i is the change
in reliability from EBV2000 to EBV2004 for sire i, and
n is the number of sires. The ratio of σ̂2

a to the genetic
variance used to derive EBV indicates whether fluctua-
tions were larger than expected relative to the amount
of information gained in subsequent evaluations,
whereas regression of EBV2004 on EBV2000 would be
expected to be 1 in the absence of any bias (Reverter et
al., 1994). The significance of differences in fluctuations
was determined by comparing σ̂2

a before and after data
adjustments with a 2-tailed paired t-test.

RESULTS

Large Herd h2
WH

Means and correlations among daughter–dam h2
WH,

daughter–sire h2
WH, midparent h2

WH, REMLSIRE h2
WH,

REMLMGS h2
WH, and REMLANIM h2

WH for milk yield are
shown in Table 2 for the large-herd subset. Mean
h2

WH was highest when estimated with daughter–dam
regression (0.32) and lowest when estimated with RE-
MLSIRE (0.19). Heritability estimates ranged from 0.04
to 0.45 for daughter–dam h2

WH, 0.01 to 0.64 for daugh-
ter–sire h2

WH, and 0.04 to 0.36 for REMLANIM h2
WH. The

h2
WH estimated with REMLANIM had standard errors

ranging from 0.02 to 0.08. Daughter–sire h2
WH could

change by year within herd because the estimation of
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daughter–sire h2
WH was dependent on herd-year SD.

The intraclass correlation for daughter–sire h2
WH ranged

from 0.91 (fat yield) and 0.95 (milk yield), indicating
that daughter–sire h2

WH varied little across years within
the same herd. Thus, daughter–sire h2

WH were averaged
across years for each herd when generating the correla-
tions shown in Table 2 and in subsequent tables. Corre-
lations among heritability estimates ranged from 0.31
between daughter–dam and REMLSIRE h2

WH to 0.94 be-
tween REMLSIRE and REMLMGS h2

WH.
Average h2

WH for fat and protein yields and SCS fol-
lowed trends similar to those for milk yield (Table 3).
Mean h2

WH for fat yield (0.33) and for SCS (0.21) were
highest when estimated with daughter–dam regression
and highest for protein yield (0.30) with daughter–sire
regression. Mean h2

WH was lowest for protein (0.19) and
fat (0.16) yields when estimated with REMLSIRE and
lowest for SCS (0.03) with daughter–sire regression.

Correlations among daughter–dam, daughter–sire,
and midparent h2

WH with REML heritability estimates
are given in Table 4. Daughter–dam h2

WH was most
strongly correlated with REMLANIM (range 0.50 to 0.68),
whereas daughter–sire h2

WH was most strongly corre-
lated with REMLMGS (range 0.27 to 0.67). For all traits,
correlations of daughter–sire h2

WH with REMLSIRE and
REMLMGS were greater than correlations between
daughter–dam h2

WH and REMLSIRE or REMLMGS.
Daughter–dam h2

WH was also more strongly correlated
with REMLANIM h2

WH than was daughter–sire h2
WH for

each trait. Correlations among REML h2
WH for SCS with

daughter–dam and daughter–sire h2
WH were generally

not significantly different from 0.
Correlations among h2

WH for yield traits and SCS (Ta-
ble 5) were positive for midparent and REMLANIM

h2
WH. Correlations for midparent h2

WH ranged from 0.41
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Table 3. Mean within-herd h2 for fat yield, protein yield, and SCS for daughter–dam and daughter–sire
regressions, midparent,1 REMLSIRE,2 REMLMGS,3 and REMLANIM

4 for 45 large herds

Within-herd h2

Daughter– Daughter– REML REML
Trait dam sire Midparent REML sire MGS animal

Fat yield 0.33 0.24 0.29 0.16 0.17 0.18
Protein yield 0.28 0.30 0.29 0.19 0.20 0.20
SCS 0.21 0.03 0.12 0.10 0.10 0.10

1Mean of daughter–dam and daughter–sire h2
WH.

2Heritability estimates derived with sire models in REML.
3Heritability estimates derived with sire–maternal grandsire models in REML.
4Heritability estimates derived with animal models in REML.

between milk yield and SCS to 0.91 between milk and
protein yields. Correlations for REMLANIM h2

WH tended
to be smaller and ranged from 0.05 between milk yield
and SCS to 0.89 between milk and protein yields. Corre-
lations between daughter–dam and daughter–sire
h2

WH for the same trait (not shown) also were positive
and ranged from 0.23 for SCS to 0.46 for fat yield.

Mean h2
WH Across All Herds

Estimates of h2
WH for yield traits and SCS were aver-

aged for the 1,939 herds in the randomly selected data
subsets (Table 6). Results varied minimally across sub-
sets, so only averages across subsets are reported. Mean
all-herd h2

WH ranged from 0.24 (daughter–sire h2
WH for

milk yield) to 0.40 (daughter–dam h2
WH for fat yield).

The h2
WH for SCS appeared to be overestimated by the

daughter–dam regression (all-herd h2
WH = 0.24) and un-

derestimated by the daughter–sire regression (all-herd
h2

WH = 0.06), but midparent h2
WH (all-herd h2

WH = 0.14)
was closer to the h2 of 0.10 assumed for national evalua-
tions (Schutz, 1994). Daughter–dam h2

WH were consider-
ably higher than daughter–sire h2

WH for milk and fat
yields and SCS, whereas daughter–sire h2

WH was nearly
the same for protein yield.

Table 4. Correlations of within-herd h2 estimated with sire models, sire–maternal grandsire (MGS) models,
and animal models, with within-herd h2 estimated with daughter–dam regressions (DDam), daughter–sire
regressions (DSire), and midparent average (Mid),1 for 45 large herds for milk, fat, and protein yields and
SCS

Sire model Sire–MGS model Animal model

Trait DDam DSire Mid DDam DSire Mid DDam DSire Mid

Milk 0.31 0.43 0.44 0.42 0.56 0.59 0.68 0.44 0.61
Fat 0.37 0.58 0.56 0.51 0.67 0.69 0.60 0.52 0.63
Protein 0.22* 0.33 0.34 0.43 0.53 0.57 0.65 0.43 0.57
SCS −0.02* 0.28* 0.09* 0.15* 0.27* 0.23* 0.50 0.22* 0.49

1Mean of daughter–dam and daughter–sire h2
WH.

*Correlation not significant (P > 0.05).
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Treating heritability within herd as a random effect
constrained h2

WH between 0 and 1 for milk yield and
effectively regressed h2

WH toward the subset average.
The daughter–sire h2

WH was 0 for some herds in all data
subsets and was as high as 0.93, whereas the range
(0.04 to 0.67) was smaller for daughter–dam h2

WH. Heri-
tability estimates generally stayed between 0 and 1 for
fat and protein yields and SCS as well. Of 1,939 herds,
2 had a daughter–dam h2

WH of <0 for 1 trait and 6 herds
had a daughter–sire h2

WH of >1 for 1 trait. The h2
WH

estimation procedures of model 3 also resulted in heri-
tability estimates that increasingly deviated from mean
heritability as herd size increased. Variation in h2

WH for
different herd sizes is shown in Figure 1 for daughter–
dam h2

WH. Variance for h2
WH and the interquartile range

increased as herd size increased. Medium-sized herds
(251 to 500 records) had a larger range than herds with
>1,000 records to estimate h2

WH, but variance was great-
est for herds with >1,000 records available.

Variation in milk yield h2
WH for different herd sizes

with no fixed regression on dam milk yield is displayed
in Figure 2. The correlation of heritability estimates
generated with and without b2D (from model [3]) was
0.75, and the range of h2

WH was greater (−0.48 to 1.14)
when b2D was removed. Heritability estimates for
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Table 5. Correlations among milk, fat, and protein yields and SCS
for midparent1 (above diagonal) and REMLANIM

2 (below diagonal)
within-herd h2 for 45 large herds

Milk Fat Protein
Trait yield yield yield SCS

Milk yield 0.80 0.91 0.41
Fat yield 0.70 0.83 0.47
Protein yield 0.89 0.64 0.45
SCS 0.05 0.10 0.07

1Mean of daughter–dam and daughter–sire h2
WH.

2Heritability estimates derived with animal models in REML.

larger herds were similar with and without fixed regres-
sions, but heritability was more variable for small
herds. Heritability estimates were less than 0 for 15%
of herds when b2D was removed. Heritability estimates
for 3% of herds without b3S (from model [3]) and 0.5%
herds without b4(Sb × SDk) were greater than 1. Re-
moval of b4(S × SDk) deflated h2

WH for small herds with
high phenotypic variance. Because b2lGl is treated as
a random effect, the coefficient for small herds was
regressed toward the subset average more severely
than were coefficients for larger herds. This created a
genetic SD estimate that is only marginally higher than
the subset mean genetic SD. When combined with a

Figure 1. Box plot of daughter–dam h2 estimates for milk yield by the total number of lactation records per herd (herd size) used to
estimate h2

WH. Median values are represented by the horizontal center line, the top and bottom of the shaded boxes represent the interquartile
range, the vertical bars represent extreme values that are within 1.5 times the interquartile range, and the asterisks represent extreme
values outside that range.

Journal of Dairy Science Vol. 90 No. 1, 2007

Table 6. Mean within-herd h2 for milk, fat, and protein yields and
SCS estimated with daughter–dam and daughter–sire regressions
for 1,939 herds

Within-herd h2

Daughter–dam Daughter–sire
Trait regression regression

Milk yield 0.35 0.24
Fat yield 0.40 0.29
Protein yield 0.31 0.32
SCS 0.24 0.06

high phenotypic variance estimate, the result is an un-
derestimated h2

WH. The reverse is true for small herds
with low phenotypic variance, and the effect was a cor-
relation of −0.45 between daughter–sire h2

WH herd ge-
netic SD without the interaction of b4(S × SDk) for milk
yield, compared with 0.54 with the interaction.

Correlations between daughter–dam and daughter–
sire h2

WH for each trait are shown in Table 7, as well as
daughter–dam and daughter–sire correlations among
traits. Correlations between daughter–dam and daugh-
ter–sire h2

WH ranged from 0.05 for milk yield to 0.13 for
fat yield. For daughter–dam h2

WH, the correlation be-
tween SCS and milk yield was 0.08 compared with a
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Figure 2. Box plot of daughter–dam h2 estimates with no fixed regression coefficient for milk yield by the total number of lactation
records per herd (herd size) used to estimate h2

WH. Median values are represented by the horizontal center line, the top and bottom of the
shaded boxes represent the interquartile range, the vertical bars represent extreme values that are within 1.5 times the interquartile range,
and the asterisks represent extreme values outside that range.

correlation of 0.81 between milk and protein yields.
Correlations were similar for daughter–sire h2

WH and
ranged from 0.02 between milk yield and SCS to 0.75
between milk and protein yields.

Data Adjustments

The ratios of observed genetic variance to assumed
true genetic variance for milk, fat, and protein yield
and SCS are given in Table 8. Low ratios are preferred,
and ratios greater than 1.0 indicate that more fluctua-
tion was observed than expected. The EBV were pooled
across subsets to generate a sufficient sample size. Ra-
tios were based on EBV for 64 sires for milk, fat, and

Table 7. Correlations between daughter–dam and daughter–sire h2

(diagonal) and correlations among daughter–dam h2 (above diagonal)
and among daughter–sire h2 (below diagonal) for yield traits and
SCS for 1,939 herds

Milk Fat Protein
Trait yield yield yield SCS

Milk yield 0.05 0.51 0.81 0.08
Fat yield 0.46 0.13 0.59 0.14
Protein yield 0.75 0.55 0.08 0.08
SCS 0.02 0.10 0.06 0.07
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protein yield, and 59 sires for SCS. The effect of ad-
justing for h2

WH on observed genetic variance was incon-
sistent across traits. Observed genetic variance was
inflated for milk yield when no adjustment was made

Table 8. Ratio of genetic variance estimated from fluctuations in
subsequent genetic evaluations to assumed true genetic variance
(σ̂2

a/σ2
a) and the regression (b) of subsequent breeding values on previ-

ous breeding values before and after adjustment for within-herd h2

from daughter–dam and daughter–sire regressions, and midparent1

Within-herd h2 adjustment

Daughter– Daughter–
Trait None dam sire Midparent

(σ̂2
a/σ2

a)
Milk yield 1.29 1.13* 1.16 1.12*
Fat yield 1.10 1.09 1.13 1.09
Protein yield 1.11 1.22 1.21 1.19
SCS 0.92 0.99 0.80 1.06

(b)
Milk yield 0.84 0.78 0.90 0.83
Fat yield 0.81 0.77 0.90 0.82
Protein yield 0.88 0.85 0.90 0.88
SCS 0.75 0.55 0.79 0.69

1Mean of daughter–dam and daughter–sire h2
WH.

*σ̂2
a before and after data adjustments different at P < 0.05.
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Table 9. Type III mean square estimates (σ̂2), values for herds in
the 10th and 90th percentiles, and predicted change in within-herd
heritability (∆h2

WH) from the 10th to 90th percentile for the following
independent variables: herd-standard deviation of mature-equivalent
milk yield (milk SD), region (California, Northeast, Southeast, Wis-
consin), average number of first-lactation animals calving per year
(heifers, n) nested within region, herd average mature-equivalent
milk yield (milk average), percentage of cows identified by a registra-
tion number (PCTHOL), and average age at first calving1

Percentile
∆h2

WH,
Independent variable σ̂2 10 90 %

Milk SD 0.231 1,158 kg 1,824 kg 4.5
Heifers, n (California) 0.0232 22 368 −3.9
Heifers, n (Northeast) 0.0232 9 63 2.6
Heifers, n (Southeast) 0.0232 16 99 0.0
Heifers, n (Wisconsin) 0.0232 9 38 −0.5
Milk average 0.0192 9,759 kg 12,750 kg 1.3
PCTHOL

3 0.0112 0% 100% 1.3
First calving age 0.0102 24.6 mo 28.9 mo −0.9
California 0.0064 265

Northeast 0.0064 315

Southeast 0.0064 295

Wisconsin 0.0064 295

1All effects are significant (P < 0.05).
2σ̂2 associated with numbers of first-lactation heifers per year

within region.
3Results based on linear and quadratic regression coefficients.
4σ̂2 associated with region.
5Least squares mean midparent h2

WH for the corresponding region.

for h2
WH and was significantly less after adjusting for

daughter–dam (P = 0.04) and midparent (P = 0.02)
σ̂2

WH. There was little impact on fluctuations in EBV for
fat yield and fluctuations increased after adjusting for
h2

WH for protein yield, but not significantly (P > 0.05).
Fluctuations for SCS were generally less than expected
except with midparent h2

WH adjustments.
Coefficients for the regression of EBV2004 on

EBV2000 are also displayed in Table 8. Regression coef-
ficients were less than 1.0 in all cases, indicating some
level of bias in the evaluations even when adjusted for
h2

WH. Adjusting for daughter–sire h2
WH indicated the

least bias in evaluations. Adjusting for daughter–dam
h2

WH decreased regression coefficients for all traits com-
pared with no data adjustment. Significance tests are
not provided for regression coefficients because of the
inability to obtain the error variance of regression coef-
ficients (Reverter et al., 1994).

The relationships between herd factors and midpar-
ent h2

WH are shown in Table 9. All factors were signifi-
cant (P < 0.05) and are arranged in order of the factor
associated the largest proportion of variance based on
type III mean square estimates (SD of milk yield) to
lowest variance (region). The variance for percentage
of cows identified with a registration number is based
on linear + quadratic regression coefficients. Regression
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coefficients indicate that greater herd phenotypic SD,
higher average milk yields, a higher percentage of regis-
tered cows, and an earlier age at first calving are associ-
ated with higher h2

WH. Midparent and daughter–sire
h2

WH were lower from herds in California, and larger
herd size (represented by more first-lactation cows) was
associated with lower h2

WH in California. Daughter–
dam h2

WH tended to be less strongly related to herd SD
and herd average, and more strongly related to the
percentage of registered cows than were midparent or
daughter–sire h2

WH. Trends for fat yield, protein yield,
and SCS were similar, except that herd average SCS
was not significantly associated with h2

WH.

DISCUSSION

A heritability estimated with daughter–dam regres-
sion for 400 daughter–dam pairs would have a standard
error of approximately 0.10 (Falconer and Mackay,
1996). Therefore, accurate heritability estimates are
difficult to obtain for a large proportion of US dairy
herds, and methods that constrain h2

WH for smaller
herds and allow h2

WH to deviate for larger herds would
be preferred. Generating h2

WH with no fixed regression
coefficients resulted in a significant increase in the
number of herds with heritability estimates greater
than 1 or less than 0. However, methods with fixed
regression coefficients successfully constrained h2

WH for
small herds while allowing h2

WH from large herds to
deviate from sample means. Including sire PTA and
herd SD interactions was necessary to derive genetic
variance estimates from daughter–sire regression. In-
cluding an interaction between sire PTA and herd SD
assumes that a genotype–environment interaction ex-
ists and that the response to selection will be less in
herds with low phenotypic variance. Reduced selection
response in herds with low phenotypic variances has
been documented (Kearney et al., 2004). The genetic
variance estimate will still be accurate, provided there
is minimal reranking of bulls across environments.
Within-herd h2 was regressed toward the subset mean
in the current study, whereas h2

WH is indirectly re-
gressed toward regional averages (by regressing herd
phenotypic SD toward the regional phenotypic SD aver-
age) in the current procedures for national genetic eval-
uations in the United States (Wiggans and VanRa-
den, 1991).

Within-herd h2 could be regressed toward herd pa-
rameters that influence h2

WH. Herd average and SD,
region of the country or state, percentage of registered
cows, herd size, and average age at first calving were
all significantly associated with h2

WH. Herds with
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greater phenotypic variance had higher heritability,
which is consistent with other studies (Van Tassell et
al., 1999). The heritability of yield has previously been
estimated to be lower in California than in New York or
Wisconsin, and heritability estimates are higher when
estimated with registered daughters (Carabaño et al.,
1990; Dimov et al., 1995). Larger herd size was associ-
ated with reduced heritability in some regions, which
is consistent with results from Zwald et al. (2003). Al-
though these herd parameters give some indication of
h2

WH, the total variance explained by the multiple re-
gression model was 31% (R2 = 0.31), indicating that the
majority of variance in h2

WH was not accounted for by
the factors analyzed.

Daughter–dam h2
WH generally were higher than

daughter–sire h2
WH. For SCS, daughter–dam h2

WH were
approximately twice as high (0.24) as the parameters
used for national genetic evaluations (Schutz, 1994)
and 4 times greater than daughter–sire h2

WH. Daughter–
dam h2

WH for milk yield were higher than previously
reported heritability estimates from paternal half-sib-
ling correlations (Van Vleck and Bradford, 1965; Van
Vleck and Bradford, 1966). Environmental effects com-
mon to daughters and dams likely inflate daughter–
dam h2

WH, as would any maternal or cytoplasmic effects
(Van Vleck and Bradford, 1965). The relative ranking
among herds for daughter–dam h2

WH would be accurate
if common environmental and maternal effects were
similar across herds.

Lower daughter–sire h2
WH could also indicate that sire

misidentification is more common than dam misidenti-
fication. Sire misidentification would have a minimal
impact on daughter–dam h2

WH, and presumably influ-
ence h2

WH from REMLSIRE and REMLMGS more severely
than REMLANIM. Daughter–dam h2

WH was not as
strongly correlated with h2

WH generated from REMLSIRE

and REMLMGS. Conversely, daughter–sire h2
WH was

more strongly correlated with h2
WH generated by

REMLMGS than h2
WH generated with REMLANIM.

Because of an interaction between genotype and envi-
ronment, daughter–sire h2

WH would be biased downward
more severely than would daughter–dam h2

WH. Both
dam and daughter were required to be from the same
herd, which would limit the effect of a genotype–envi-
ronment interaction on h2

WH estimates. Sire PTA are
generated across herds, and regression on sire PTA
would be depressed if a genotype–environment interac-
tion existed. Variance of the sire–herd interaction can
be combined with additive genetic variance to estimate
mean h2

WH across herds (Notter et al., 1992). The herd–
sire interaction was estimated to be approximately 2%
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of phenotypic variance for milk yield in Holsteins (Di-
mov et al., 1995), which indicates that daughter–sire
h2

WH could be appreciably depressed by the presence of
a genotype–environment interaction.

The effect of data adjustment on EBV fluctuations
was inconsistent and only daughter–sire h2

WH adjust-
ments increased regression coefficients of EBV2004 on
EBV2000. Some possible negative impacts of adjusting
for h2

WH should be considered. Daughter–dam regres-
sion could expand the influence of preferential treat-
ment. Preferential treatment within certain cow fami-
lies is likely to increase daughter–dam h2

WH, and genetic
evaluations that adjust for daughter–dam h2

WH would
weight those records even more heavily. In addition,
the method used to generate daughter–sire h2

WH has
part–whole influences. Records are weighted more
heavily in herds in which daughter yield is highly corre-
lated with past sire evaluations, which could create a
stronger relationship between daughter performance
and sire evaluations in future evaluations and inflate
future daughter–sire h2

WH. Alternative uses for h2
WH

might avoid such issues and should be investigated.
Reliability could be adjusted to reflect the impact of
h2

WH. Progeny-test herds with low h2
WH may be candi-

dates for DNA parentage verification or removal from
progeny-test programs.

CONCLUSIONS

Estimates for h2
WH can be generated using the regres-

sion of daughter records on dam records and the regres-
sion of daughter records on sire PTA with moderate
accuracy. Daughter–dam h2

WH were a stronger indicator
of heritability estimated with an animal model,
whereas daughter–sire h2

WH were stronger indicators of
heritability estimated with sire and sire–MGS models.
Both daughter–dam and daughter–sire methods dem-
onstrate that significant differences exist among herds
for heritability. Those differences could result from
variability in recordkeeping (especially more accurate
pedigrees), genotype–environment interaction, or other
identifiable herd factors, including the percentage of
registered cows, herd size, herd average yield or SCS,
herd standard deviations for yield and SCS, average age
at first calving, and region of the country. Heritability
differences among herds could substantially alter the
accuracy of EBV depending on the average h2

WH of the
herds in which a bull’s daughters are located.

Data adjustments generally did not reduce fluctua-
tions in subsequent genetic evaluations and only
daughter–sire h2

WH improved regressions of subsequent
EBV. For the methods that were investigated, the effect
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of preferential treatment on h2
WH is not clear, or whether

part–whole influences from past genetic evaluations
would artificially inflate h2

WH for some herds. Other
methods of incorporating h2

WH into genetic evaluations,
such as adjusting reliability estimates based on h2

WH,
that would avoid effects of preferential treatment and
part–whole relationships should be investigated.
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