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ABSTRACT

Genetic progress will increase when breeders exam-
ine genotypes in addition to pedigrees and phenotypes. 
Genotypes for 38,416 markers and August 2003 genetic 
evaluations for 3,576 Holstein bulls born before 1999 
were used to predict January 2008 daughter deviations 
for 1,759 bulls born from 1999 through 2002. Geno-
types were generated using the Illumina BovineSNP50 
BeadChip and DNA from semen contributed by US 
and Canadian artificial-insemination organizations 
to the Cooperative Dairy DNA Repository. Genomic 
predictions for 5 yield traits, 5 fitness traits, 16 con-
formation traits, and net merit were computed using a 
linear model with an assumed normal distribution for 
marker effects and also using a nonlinear model with 
a heavier tailed prior distribution to account for ma-
jor genes. The official parent average from 2003 and a 
2003 parent average computed from only the subset of 
genotyped ancestors were combined with genomic pre-
dictions using a selection index. Combined predictions 
were more accurate than official parent averages for all 
27 traits. The coefficients of determination (R2) were 
0.05 to 0.38 greater with nonlinear genomic predictions 
included compared with those from parent average 
alone. Linear genomic predictions had R2 values similar 
to those from nonlinear predictions but averaged just 
0.01 lower. The greatest benefits of genomic prediction 
were for fat percentage because of a known gene with 
a large effect. The R2 values were converted to real-
ized reliabilities by dividing by mean reliability of 2008 
daughter deviations and then adding the difference 
between published and observed reliabilities of 2003 
parent averages. When averaged across all traits, com-
bined genomic predictions had realized reliabilities that 
were 23% greater than reliabilities of parent averages 

(50 vs. 27%), and gains in information were equivalent 
to 11 additional daughter records. Reliability increased 
more by doubling the number of bulls genotyped than 
the number of markers genotyped. Genomic prediction 
improves reliability by tracing the inheritance of genes 
even with small effects.
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INTRODUCTION

Genomic predictions combine genotypic, phenotypic, 
and pedigree data to increase the accuracy of estimates 
of genetic merit and to decrease generation interval. 
Traditional genetic evaluations combine only pheno-
typic data and probabilities that genes are identical 
by descent from pedigree data instead of tracing the 
inheritance of individual genes. Widely spaced markers 
could indicate the sharing of long chromosome segments 
within closely related family members, but could not 
detect the many minor genetic effects shared by distant 
relatives. Marker genotypes for thousands of loci across 
the genome can measure genetic similarity more pre-
cisely (Meuwissen, 2007). Markers that are identical in 
state may be shared through common ancestors earlier 
than those in the known pedigree.

Genetic effects must exist somewhere on the chro-
mosomes for any trait with a nonzero heritability. 
Previously, marker-assisted selection was used to trace 
the inheritance of only a few major genes. Success was 
limited, and few studies reported substantial gains with 
real populations (Dekkers, 2004). More recently, selec-
tion in France resulted in R2 with eventual daughter 
evaluations that were 5 to 19% greater for genomic 
predictions than for parent averages (PA; Boichard et 
al., 2006). Expected gains in reliability from simulation 
were slightly lower (Guillaume et al., 2008).

A recently developed high-density assay of SNP can 
now be used to trace even small genetic effects (Van 
Tassell et al., 2008). “Fairly soon, as information con-
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tinues to accumulate, a point will be reached where 
there is sufficient information on marker/QTL coupling 
in the ancestors of the candidate bulls, to eliminate the 
progeny testing step altogether, and shift completely to 
MAS as the primary means of selection among young 
sires” (Soller, 1994). Although that prediction did not 
come true in the decade after it was made, large gains 
are theoretically possible and could come true given 
sufficient numbers of genotyped animals and markers.

Objectives of this research were 1) to apply genomic 
prediction methods to genotypes for a large population 
of Holstein bulls, 2) to estimate gains in reliability from 
using genomic evaluations instead of traditional evalu-
ations and PA, and 3) to document how the density of 
markers and numbers of genotyped bulls affect predic-
tive ability.

MATERIALS AND METHODS

Bull Population

The Holstein bulls to be genotyped were categorized 
as predictor bulls (3,576 bulls born from 1952 through 
1998) or predicted bulls (1,759 bulls born from 1999 
through 2002). Information from the predictor bulls 
was used to compute predictions, which were tested 
with the predicted bulls. These 2 groups can also be 
described as training data and test data, respectively 
(Meuwissen, 2007). The predictor bulls included mainly 
bulls born from 1995 through 1998 and ancestors of 
those bulls. The exact age distribution of the 5,335 
genotyped bulls is in Table 1.

Predictor bulls were required to have a reliability of 
at least 75% for net merit in August 2003, and predict-
ed bulls were required to have information from ≥10 

daughters in their evaluations by April 2008. An initial 
proposal was to select predictor bulls with the most 
extreme evaluations to help identify major genes, but 
selective genotyping was not used so that the selected 
bulls would be more representative of the general popu-
lation and give more realistic estimates of achievable 
prediction accuracy.

Genomic Data

The main source of extracted DNA was from se-
men held in the Cooperative Dairy DNA Reposi-
tory maintained by the Bovine Functional Genomics 
Laboratory, ARS, USDA (Beltsville, MD). All major 
AI organizations routinely contributed semen samples 
to the repository when young bulls were enrolled in 
progeny testing in the United States (Ashwell and Van 
Tassell, 1999). Also, Semex Alliance (Guelph, Ontario, 
Canada) routinely contributed semen and DNA from 
young bulls tested exclusively in Canada. Semen from 
significant ancestor bulls was purchased independently 
or was provided by the National Center for Genetic Re-
sources Preservation, ARS, USDA (Fort Collins, CO), 
and genotyped to help trace genetic inheritance.

Marker genotypes were obtained using the Bo-
vineSNP50 BeadChip (Illumina, San Diego, CA). 
Markers on the chip were selected to be evenly dis-
tributed across chromosomes and polymorphic across a 
variety of breeds included in the International Bovine 
HapMap Project (International Bovine HapMap Con-
sortium, 2006). Extraction of DNA and genotyping was 
conducted by the Bovine Functional Genomics Labora-
tory, ARS, USDA (Beltsville, MD); Division of Animal 
Sciences, University of Missouri (Columbia, MO); De-
partment of Agricultural, Food and Nutritional Science, 
University of Alberta (Edmonton, Canada); GeneSeek 
(Lincoln, NE); Genetics & IVF Institute (Fairfax, VA); 
and Illumina Inc. (San Diego, CA). Scoring of marker 
genotypes was done using Illumina’s Beadstudio soft-
ware (v3.2.23).

For most SNP, genotypes were read for >99% of bulls 
with <0.1% error rates among those read. Success rate 
was quantified by agreement of son with sire genotypes 
and by reading the same DNA more than once for 9 
individual bulls, for 2 pairs of identical twins, and for 
a trio of clones. Some SNP had minor allele frequen-
cies of <0.05 in Holsteins and were excluded. That edit 
reduced the number of loci to 40,426 from the original 
51,386 SNP that could be reliably read. Single nucle-
otide polymorphisms with lower minor allele frequen-
cies may be included in future analyses because their 
effects are estimated more accurately as sample size 
increases.
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Table 1. Distribution of bulls selected for genotyping (n = 5,335) by 
birth year of bull 

Bull category Birth year Bulls (n)

Predictor (n = 3,576) 1952 to 1959 10
1960 to 1969 17
1970 to 1979 41
1980 to 1989 545
1990 73
1991 57
1992 50
1993 56
1994 148
1995 686
1996 666
1997 840
1998 387

Predicted (n = 1,759) 1999 394
2000 384
2001 605
2002 376



Each SNP was compared with all others to eliminate 
those that were redundant (correlation of 1) because 
of complete linkage disequilibrium. Of the selected 
SNP, 2,010 had an inheritance pattern identical to an-
other SNP for all 5,335 bulls or had <10 differences. 
Those “duplicate” SNP, which had physical distances 
between loci only half as large as the mean distance 
between adjacent loci, were removed leaving 38,416 loci 
for genomic predictions. Allele frequencies in the base 
(founder) population were estimated using the algo-
rithm of Gengler et al. (2007) that solves for gene con-
tent of nongenotyped ancestors and descendants using 
pedigrees. The pedigree file with all known ancestors 
of the 5,335 bulls included 41,414 cows and bulls. The 
genotype file included 205 million known and 2.0 mil-
lion (1%) unknown genotypes. For genotyped animals, 
missing genotypes were set to 0, 1, or 2 (number of the 
counted allele present) if the allele count estimated from 
relatives for that SNP was different by ≤0.20 from 0, 
1, or 2, respectively. Using this process, 974,961 (49%) 
of the 2 million missing genotypes were imputed. Equa-
tions of VanRaden (2008) allowed distinction between 
known and missing genotypes, but the alternative of 
regressing on probabilities for all genotypes could in-
crease accuracy and should be examined.

Official genetic evaluations were combined with ge-
nomic data secondarily instead of analyzing phenotypic 
records directly. All results were expressed on the US 
scale and included multitrait across-country evaluations 
from the Interbull Centre (Uppsala, Sweden) for bulls 
that had been progeny tested in Canada. Official evalu-
ations for predictor bulls were obtained from August 
2003 when the predicted bulls were 1 to 4 yr old. The 
dependent variable for analysis was daughter deviation 
weighted by reliability from daughters, which was com-
puted from total daughter equivalents minus daughter 
equivalents from PA.

Genomic Predictions

Predictions were computed using linear and nonlin-
ear genomic models (VanRaden, 2007, 2008). For linear 
predictions, the traditional additive genetic relationship 
matrix is replaced by a genomic relationship matrix 
and is equivalent to assigning equal genetic variance 
to all markers. For nonlinear predictions, markers with 
smaller effects are regressed further toward zero; mark-
ers with larger effects are regressed less to account for 
a nonnormal prior distribution of marker effects. Dif-
fering assumptions about numbers and sizes of QTL 
effects could result in better predictions than those of 
this initial test.

Genomic predictions and PA calculated from August 
2003 data of older animals were compared for ability 
to predict April 2008 evaluations for younger bulls for 
27 traits: milk, fat, and protein yields; fat and protein 
percentages; productive life; SCS; daughter pregnancy 
rate; sire and daughter calving ease; final score; stature; 
strength; body depth; dairy form; foot angle; rear legs 
(side and rear views); rump angle and width; fore ud-
der; rear udder height; udder depth and cleft; front teat 
placement; teat length; and net merit. The experimen-
tal design provided an independent, realistic test by 
separating early daughter information of ancestors used 
to compute predictions from later daughter information 
of descendants used to assess prediction accuracy.

Because 2003 PA had not been stored for type traits or 
for calving ease, 2003 pedigree indexes (PI) constructed 
as 0.5(sire PTA) + 0.25(maternal grandsire PTA) + 
0.25(birth year mean PTA) were substituted for PA for 
those traits. Reliability of PI is lower than that of PA, 
especially for highly heritable traits, because records for 
the dam are excluded. The 2008 PA was not substituted 
for the 2003 PA because then the son’s information 
would have added to his dam’s reliability.

Direct genomic predictions included less phenotypic 
information than the official PA because genotypes were 
available and evaluations were included for only a sub-
set of the total population. Some sires and grandsires 
of the predicted bulls were not genotyped, and none 
of their dams were genotyped. For comparison with 
genomic predictions, a second set of PA for predicted 
bulls was computed using traditional relationships with 
only the subset of genotyped ancestors (evaluations of 
nongenotyped ancestors were excluded from PA). Infor-
mation from the other relatives was included after all 
other processing.

Final genomic predictions for predicted bulls com-
bined 3 terms by selection index: 1) direct genomic pre-
diction; 2) PA computed from the subset of genotyped 
ancestors using traditional relationships; and 3) pub-
lished PA or PI. The selection index for the predictor 
bulls included: 1) direct genomic prediction; 2) subset 
PTA; and 3) published PTA. Some of the predicted 
bulls already had PTA for service sire calving ease by 
August 2003, and in that case, their published PTA 
from 2003 was used to compute the combined PTA. To 
avoid a part-whole correlation between 2003 and 2008 
data, only the 552 bulls with no progeny by 2003 were 
used to test predictions for sire calving ease.

For each bull, a 3 × 3 symmetric matrix V was set 
up with reliabilities for the 3 terms on the diagonals 
and the following functions of those 3 reliabilities on 
the off-diagonals:
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V12 = V22,

V23 = V22, and

V13 = V22 + (V11 − V22) (V33 − V22)/(1 − V22).

For all bulls, V11 and V33 were constrained to be greater 
than V22 to ensure positive definite matrices. Selection 
index coefficients were then c′ V−1, where c′ is a vector 
with elements [V11 V22 V33]. The direct genomic reli-
abilities used in V11 were obtained by inverting a ma-
trix with dimension equal to the number of genotyped 
animals. As numbers of genotyped animals increase, 
approximation strategies will be required to avoid the 
need to invert that large matrix.

Regressions and correlations were used to test pre-
dictions. A bull’s published PTA is a weighted mean 
of his daughter deviation and his PA, and the use of 
deregressed evaluations or daughter deviations as 
dependent variables helps to avoid part-whole correla-
tions with PA. Because daughter deviations as defined 
by VanRaden and Wiggans (1991) were not available 
for all traits, daughter deviations were computed as 
deregressed evaluations:

 
PTA PA

regression coefficient
+ PA.

-æ
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çççç

ö

ø
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The regression coefficient was calculated from daugh-
ter equivalents from progeny, which was obtained by 
subtracting daughter equivalents from parents from the 
bull’s total daughter equivalents. The 5,335 genotyped 
bulls averaged 1,949 daughters each, for a total of >10 
million daughters with phenotypic data.

Genomic reliabilities were calculated in 2 ways. Ex-
pected genomic reliabilities were obtained by inverting 
mixed model equations that included genomic instead of 
traditional relationships. Realized genomic reliabilities 
were calculated from R2 of 2003 predictions with 2008 
daughter deviations after adjusting for error variance in 
the daughter deviations and for prior selection on pedi-
gree. The R2 from PA and from the nonlinear model 
were divided by mean reliability of daughter deviations 
(Rdau), and then the difference between the published 
and observed PA reliability was added to the adjusted 
genomic R2 to obtain the realized genomic reliability. 
Mathematically

PA adjustment = (published reliability of PA)  

− (R2 of PA)/Rdau, and 

realized genomic reliability = (genomic R2/Rdau)  

+ PA adjustment.

The gain from genotyping is the difference between 
the realized genomic reliability and the reliability of 
traditional PA.

Sex Chromosomes

The X chromosome of a bull is inherited by all of 
his daughters but by none of his sons. Thus, 2 esti-
mates of his genetic merit can be provided: PTA for his 
daughters is the sum of all marker effects, whereas PTA 
for his sons excludes effects of 605 markers on the X 
chromosome. Another 44 markers were located on the 
pseudo-autosomal region of X and included in the auto-
somal sum rather than the X chromosome sum. Fewer 
SNP have been identified on the X chromosome, and 
the spacing between markers is about 3 times greater 
than on the autosomes.

Cows also can have different PTA for daughters than 
for sons. For cows, effects on the X chromosome are 
doubled for producing sons because the X chromosome 
transmitted to sons will be transmitted to 50% of grand-
daughters instead of the 25% expected for autosomes.

Son merit for bulls was constructed as twice the mean 
of his sons’ daughter deviations adjusted for PTA of the 
sons’ dams. For 796 genotyped bulls that had ≥10 evalu-
ated sons, differences between PTA from daughters and 
mean of sons’ PTA were used to test if estimated effects 
for net merit on the X chromosome were statistically 
significant. Another test included only the autosomal 
and pseudo-autosomal markers in the genotype file and 
compared predictions computed with and without the 
605 markers on X.

Numbers of Bulls and SNP

More predictor bulls can increase reliability by pro-
viding more data to estimate each SNP effect. Large 
numbers of records are required to estimate the small 
effects of individual genes accurately. Numbers of bulls 
were compared using subsets of the bull genotypes as 
they became available. Net merit R2 values for younger 
bulls were compared using 3 progressively larger subsets 
that included 1,402, 2,391, and 3,319 bulls. Methods 
used were the same as for the full set of 5,335 bulls.

More markers can increase the accuracy of genomic 
selection by providing SNP located closer to the caus-
ative genes. Three SNP densities were compared using 
the same methods and genotypes for the full set of 
predictor and predicted bulls. The edited set of 38,416 
SNP with >5% minor allele frequency in Holsteins (des-
ignated as 40K) was compared with subsets of exactly 
50 or 25% of those SNP: 19,208 (20K) or 9,604 (10K). 
The 20K and 10K subsets were obtained by keeping 
every other or every fourth SNP sequentially across 
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each chromosome, respectively. Results for 5 yield 
traits (milk, fat, and protein yields and fat and protein 
percentages), 3 fitness traits (productive life, SCS, and 
daughter pregnancy rate), and net merit were obtained 
using the nonlinear genomic model.

RESULTS AND DISCUSSION

Genomic predictions increased model R2 (P < 0.0001) 
compared with use of PA alone for all 26 traits and 
for net merit. The R2 of daughter deviations with PA 
and with linear and nonlinear genomic predictions are 
reported in Table 2 for each trait. The greatest gains 
in R2 from using nonlinear genomic predictions rather 
than PA were for fat and protein percentages, fat yield, 
and udder depth.

The greatest marker effects were for fat percentage 
on Bos taurus autosome (BTA) 14 flanking the acyl-
CoA:diacylglycerol acyltransferase 1 gene (Grisart et 
al., 2004), with lesser effects for milk and fat yields. 
Large marker effects for protein percentage were also 
present on BTA 6 flanking the ATP-binding cassette, 
subfamily G, member 2 gene (Cohen-Zinder et al., 
2005). Detection of those effects demonstrates that 
genomic predictions work by tracking the inheritance 
of causal mutations. A previous analysis of markers on 

BTA 14 (de Roos et al., 2007) obtained similar results. 
Markers on BTA 18 centered on marker ARS-BFGL-
NGS-109285 had the greatest effects for several traits: 
productive life, sire calving ease, daughter calving ease, 
rump width, stature, strength, and body depth. Another 
marker on BTA 18 had the largest effect on net merit in 
the region previously identified by Ashwell et al. (2004) 
as having a large effect on daughter pregnancy rate.

Marker effects for most other traits were evenly 
distributed across all chromosomes with only a few re-
gions having larger effects, which may explain why the 
infinitesimal model and standard quantitative genetic 
theories have worked well. The distribution of marker 
effects indicates primarily polygenic rather than simple 
inheritance and suggests that the favorable alleles will 
not become homozygous quickly, and genetic variation 
will remain even after intense selection. Thus, dairy 
cattle breeders may expect genetic progress to continue 
for many generations.

Nonlinear and linear predictions were correlated by 
>0.99 for most traits. The nonlinear genomic model 
had little advantage in R2 over the linear model except 
for fat and protein percentages with increases of 8 and 
7%, respectively (Table 2). Gains in R2 averaged 3% 
with simulated data (VanRaden, 2008) but generally 
were smaller with real data, which indicated that most 
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Table 2. Coefficients of determination (R2 × 100) for 2008 daughter deviations with 2003 predictions 

Trait
Traditional 

parent average

Genomic prediction Gain from nonlinear genomic 
prediction compared 
with parent averageLinear Nonlinear Difference1

Net merit 11 28 28 0 17
Milk yield 28 47 49 2 21
Fat yield 15 42 44 2 29
Protein yield 27 47 47 0 20
Fat percentage 25 55 63 8 38
Protein percentage 28 51 58 7 30
Productive life 17 26 27 1 10
SCS 23 37 38 1 15
Daughter pregnancy rate 20 30 29 −1 9
Sire calving ease 17 21 22 1 5
Daughter calving ease 14 22 22 0 8
Final score 23 35 36 1 13
Stature 27 49 50 1 23
Strength 16 33 34 1 18
Body depth 17 36 37 1 20
Dairy form 9 29 28 −1 19
Foot angle 13 23 21 −2 8
Rear legs (side view) 10 27 27 0 17
Rear legs (rear view) 11 21 19 −2 8
Rump angle 20 44 43 −1 23
Rump width 19 38 36 −2 17
Fore udder 17 39 40 1 23
Rear udder height 20 35 36 1 16
Udder depth 18 47 46 −1 28
Udder cleft 18 30 30 0 12
Front teat placement 22 41 42 1 20
Teat length 12 35 34 −1 22
All 19 36 37 1 18

1Nonlinear minus linear genomic prediction.



traits are influenced by more loci than the 100 QTL 
used in simulation. The R2 improved when the prior as-
sumption was that all markers have some effect rather 
than that most have no effect. Results comparing dif-
fering priors and a detailed summary of the locations of 
markers with largest effects for each trait were reported 
by Cole et al. (2008). Further nonlinear optimization 
procedures should be investigated and could result in 
larger advantages than those tested here.

Actual R2 may differ from expected reliability for 
5 main reasons: 1) daughter deviations contain error, 
especially for lowly heritable traits, resulting in lower 
R2 than reliability; 2) selection of elite parents de-
creases R2 for directly selected traits, such as net merit, 
whereas published reliabilities assume no selection; 3) 
genetic effects may reside between the markers but are 
assumed to be located only at the markers; 4) gains in 
R2 may have large standard errors because of limited 
numbers of predicted bulls; and 5) a few genotypes are 
missing or read incorrectly. Observed gains in R2 were 
adjusted for effects of 1) and 2) to compute observed 
reliability, but no theoretical adjustments were avail-
able to correct expected gains in reliability for effects 
of 3), 4), and 5).

Gains in reliability from genotyping the predicted 
bulls are shown in Table 3 and averaged 23% across 
traits with a range from 8 to 43%. Gains were also con-

verted to daughter equivalents or the number of pheno-
typed daughters that would provide the same increase 
in reliability. Daughter equivalents were calculated from 
the published heritability of each trait and averaged 11 
for predicted bulls (Table 4). Gains in reliability were 
uniform across traits. Gains in daughter equivalents 
were smaller for traits with greater heritability than 
for traits with lesser heritability because each daugh-
ter equivalent is worth more for more heritable traits. 
For net merit, observed reliability of PA was less than 
theoretical reliability because of intense selection and 
because the net merit index was changed in 2006 to 
include stillbirths. Fat yield and some conformation 
traits also had lower observed than published reliability 
of PA.

Reliability of predictor bulls also increased slightly 
when genomic predictions replaced traditional PTA. 
Predictions were better (P < 0.001) for 26 of 27 traits 
for bulls that added daughters and had an increase in 
reliability of ≥10% from 2003 to 2008. Only the gain 
for service-sire calving ease was nonsignificant. Gains in 
reliability for cows with records should be intermediate 
between those for young bulls and proven bulls because 
traditional reliabilities for most cows are only somewhat 
greater than their PA reliabilities.

Selection index regressions were fairly uniform for all 
predicted bulls even though separate 3 × 3 matrices 
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Table 3. Expected and observed reliabilities (%) from genomic predictions and from parent average 

Trait

Parent average Genomic prediction Gain from nonlinear genomic 
prediction compared with 
published parent averagePublished Observed Expected Linear Nonlinear

Net merit 30 14 67 53 53 23
Milk yield 35 32 69 56 58 23
Fat yield 35 17 69 65 68 33
Protein yield 35 31 69 58 57 22
Fat percentage 35 29 69 69 78 43
Protein percentage 35 32 69 62 69 34
Productive life 27 28 55 42 45 18
SCS 30 29 62 49 51 21
Daughter pregnancy rate 25 33 52 41 41 16
Sire calving ease 27 26 60 33 35 8
Daughter calving ease 25 24 54 39 40 15
Final score 24 31 63 40 42 18
Stature 25 32 67 51 51 26
Strength 24 21 63 48 49 25
Body depth 24 23 63 50 51 27
Dairy form 24 12 62 52 49 25
Foot angle 23 20 58 40 37 14
Rear legs (side view) 24 14 62 47 46 22
Rear legs (rear view) 23 18 57 38 35 12
Rump angle 25 24 66 53 52 27
Rump width 24 25 62 49 47 23
Fore udder 24 22 63 53 54 30
Rear udder height 24 27 63 44 45 21
Udder depth 25 22 64 61 60 35
Udder cleft 24 26 61 41 41 17
Front teat placement 24 28 63 49 50 26
Teat length 25 15 65 52 51 26
All 27 25 63 49 50 23



were used for each. Mean regression coefficients for the 
direct prediction, subset PA, and published PA were 
0.99, −0.52, and 0.53, respectively. The selection index 
regressions are a function of the mean reliabilities for 
the predicted bulls. Inclusion of the subset PA allows 
the difference between genomic and traditional predic-
tions (for the same subset of data) to be added to the 
published PA, which included all national and interna-
tional data. As genotypes and phenotypes are included 
for more parents, regressions should approach 1 for the 
direct genomic prediction and approach 0 for the 2 PA 
terms.

Genomic predictions were expected to have the same 
mean as traditional evaluations, but their standard 
deviation (SD) was expected to increase in proportion 
to the increased accuracy. Thus, the SD of change from 
PA to genomic prediction should equal the SD of true 
transmitting ability multiplied by the square root of 
the gain in reliability for each trait, where reliability 
is expressed as a fraction (divided by 100) rather than 
a percentage. That formula can be applied to gains in 
reliability from any source of information (daughters, 
animal’s own records, and so on). Genomic predictions 
follow most of the same normal distribution formulas 
that animal breeders are already using.

Most animal breeders will conclude that these gains 
in reliability are sufficient to make genotyping profit-
able before breeders invest in progeny testing or em-
bryo transfer. Rates of genetic progress should increase 
substantially as breeders take advantage of these new 
tools for improving animals (Schaeffer, 2008). Further 
increases in number of genotyped bulls, revisions to the 
statistical methods, and additional edits should increase 
the precision of future genomic predictions.

Sex Chromosomes

Effects on the X chromosome were smaller than ex-
pected; SD was about 0.1 genetic SD and accounted 
for only about 1% of genetic variance for most traits. 
However, those effects were associated (P < 0.0001) 
with differences between genetic merit of bull sons 
compared with bull daughters. Official PTA measures 
daughter genetic merit almost entirely because most 
sires have many more daughters than sons with data. 
For net merit, the regression on X effect was −1.3 with 
an SD of 0.3, which was close to the theoretical value of 
−1.0. Predictions computed without the markers on X 
had slightly lower R2 for 8 of 9 traits than for the full 
set (Table 5).
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Table 4. Heritabilities and daughter equivalents from genomic prediction and from parent average 

Trait Heritability

Daughter equivalents

Parent  
average

Genomic 
prediction

Gain from genomic 
prediction compared 
with parent average

Net merit 0.20 8 20 12
Milk yield 0.30 6 16 10
Fat yield 0.30 6 24 18
Protein yield 0.30 6 15 9
Fat percentage 0.50 3 22 19
Protein percentage 0.50 3 13 10
Productive life 0.08 18 39 21
SCS 0.12 14 32 18
Daughter pregnancy rate 0.04 32 67 35
Sire calving ease 0.09 16 24 8
Daughter calving ease 0.06 21 41 20
Final score 0.29 4 8 5
Stature 0.42 3 8 5
Strength 0.31 3 10 7
Body depth 0.37 3 9 6
Dairy form 0.29 4 12 8
Foot angle 0.15 7 14 7
Rear legs (side view) 0.21 5 14 9
Rear legs (rear view) 0.11 10 19 9
Rump angle 0.33 3 11 8
Rump width 0.26 4 12 8
Fore udder 0.29 4 14 10
Rear udder height 0.28 4 10 6
Udder depth 0.28 4 18 14
Udder cleft 0.24 5 10 5
Front teat placement 0.26 4 13 9
Teat length 0.26 4 14 10
All 0.25 8 19 11



Previous research with North American evaluations 
(Boettcher et al., 2001) indicated little genetic variation 
on the X chromosome, but many markers and many 
bulls now allow tracking even those small amounts of 
variation. Significant marker effects were detected on 
the X chromosome for several traits in the Netherlands 
(Sandor et al., 2006), and they also recommended using 
sex-linked markers in genomic evaluation.

Numbers of Bulls and SNP

For bull subsets (Table 6), gains in R2 for net merit 
were nearly linear with increasing numbers of predictor 
bulls. Gains for most other individual traits (not shown) 
followed that same pattern. Although linear increases 
cannot continue indefinitely, the results suggest that 
genotyping additional predictor bulls will be profitable 
and that genomic selection within small populations 
will not achieve the large gains obtained for the North 
American Holstein population.

Greater SNP densities gave more accurate predictions 
for all 9 traits (Table 5). The R2 values were greater 
for each trait for the 40K SNP set compared with the 
20K SNP subset and for the 20K SNP subset compared 
with the 10K SNP subset. Compared with the gain 
in R2 from PA to 40K SNP density, 10K SNP density 
provided about 80% of the gain, and 20K SNP density 
provided about 90%.

In a preliminary study with fewer bulls, differences in 
R2 between 20K and 40K SNP densities were not con-

sistent or significant. Gains in reliability were expected 
from estimates of linkage disequilibrium for North 
American Holsteins (Sargolzaei et al., 2008) and from 
simulation studies (Calus et al., 2008). Although SNP 
density is already high, actual QTL are between the 
SNP, which may explain why most realized reliabili-
ties were less than expected reliability. In the future, 
affordable SNP chips with greater density will likely 
become available and lead to further small increases in 
reliability.

The genetic history of the Holstein population may 
help to explain the results. Many animals share com-
mon DNA segments from Round Oak Rag Apple Eleva-
tion, Pawnee Farm Arlinda Chief, To-Mar Blackstar, 
and other popular ancestors occurring 4 to 10 genera-
tions back in current pedigrees. Few common ancestors 
occur >10 generations back because individual bulls 
had limited influence before AI with frozen semen be-
gan (Young and Seykora, 1996). Lengths of the shared 
chromosome segments are thus 0.10 to 0.25 of the 
mean chromosome length, and a few hundred markers 
per chromosome are adequate to trace those segments 
shared within families.

In the next generation, the common ancestors will 
be 1 generation further back, and more crossovers will 
occur between their adjacent alleles. If the allele effects 
estimated from families in this study were applied to 
less-related animals from other populations, predictions 
could be much less reliable. Divergent populations may 
require greater SNP densities. As more bulls are geno-
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Table 5. Coefficients of determination (R2 × 100) for parent average and for genomic predictions with differing 
numbers of markers 

Trait
Parent  
average

Number of markers Without X

9,604  
(10K)

19,208 
(20K)

38,416 
(40K) 37,811

Net merit 11 25 26 28 27
Milk yield 28 45 47 49 47
Fat yield 15 41 43 44 43
Protein yield 27 45 46 47 46
Fat percentage 25 59 61 63 62
Protein percentage 28 48 53 58 53
Productive life 17 24 25 27 26
SCS 23 34 36 38 36
Daughter pregnancy rate 20 27 28 29 29

Table 6. Coefficients of determination (R2 × 100) for parent average and for genomic prediction of net merit 
for bull subsets 

Bull subset

Parent average Genomic prediction

Gain from genomic 
prediction compared 
with parent averagePredictor bulls, n Predicted bulls, n

1,151 251 8 12 4
2,130 261 8 17 9
2,609 510 8 21 13
3,576 1,759 11 28 17



typed, more phenotypes will be available to estimate 
each effect. This will increase the value of having more 
SNP, but will also require the expense of genotyping 
the predictor bulls again using a denser chip.

CONCLUSIONS

Genomic methods let breeders determine which genes 
animals share. Genotypes for 3,576 predictor bulls and 
1,759 predicted bulls were used to test predictive ability 
for genetic merit of 26 traits and net merit. Reliability 
for predicted bulls was 50% for genomic predictions 
versus 27% for traditional PA, a mean increase of 23% 
across traits. Gains from genomic data increased al-
most linearly with number of genotyped predictor bulls 
and also increased substantially as more SNP were in-
cluded. Gains for proven bulls were also highly signifi-
cant (P < 0.001) but smaller because of greater initial 
reliabilities for proven bulls. Gains for young heifers 
should be nearly identical to those for young bulls, with 
the exception of some small effects on the X chromo-
some. Genomic predictions using all 5,335 proven bulls 
to predict the current generation of young bulls were 
distributed unofficially to animal owners in April 2008. 
Genomic predictions will be officially implemented in 
2009 and will replace traditional PTA and PA from the 
animal model.
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