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  ABSTRACT 

  Emphasizing increased profit through increased dairy 
cow production has revealed a negative relationship of 
production with fitness and health traits. Decreased 
cow health can affect herd profitability through in-
creased rates of involuntary culling and decreased or 
lost milk sales. The development of genomic selection 
methodologies, with accompanying substantial gains in 
reliability for low-heritability traits, may dramatically 
improve the feasibility of genetic improvement of dairy 
cow health. Producer-recorded health information 
may provide a wealth of information for improvement 
of dairy cow health, thus improving profitability. The 
principal objective of this study was to use health data 
collected from on-farm computer systems in the United 
States to estimate variance components and heritabil-
ity for health traits commonly experienced by dairy 
cows. A single-step analysis was conducted to estimate 
genomic variance components and heritabilities for 
health events, including cystic ovaries, displaced ab-
omasum, ketosis, lameness, mastitis, metritis, and re-
tained placenta. A blended H matrix was constructed 
for a threshold model with fixed effects of parity and 
year-season and random effects of herd-year and sire. 
The single-step genomic analysis produced heritability 
estimates that ranged from 0.02 (standard deviation 
= 0.005) for lameness to 0.36 (standard deviation = 
0.08) for retained placenta. Significant genetic correla-
tions were found between lameness and cystic ovaries, 
displaced abomasum and ketosis, displaced abomasum 
and metritis, and retained placenta and metritis. Sire 
reliabilities increased, on average, approximately 30% 
with the incorporation of genomic data. From the re-
sults of these analyses, it was concluded that genetic 
selection for health traits using producer-recorded data 
are feasible in the United States, and that the inclusion 
of genomic data substantially improves reliabilities for 
these traits. 
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  INTRODUCTION 

  Previous emphasis on increased profit through in-
creasing dairy cow production has made a negative 
relationship of production with fitness traits become 
apparent (Rauw et al., 1998). An alternative to in-
creasing net profit is to decrease management costs by 
improving the overall health of the cows (Zwald et al., 
2004a). Declining health of cows can affect the profit-
ability of a herd by affecting several aspects, such as 
additional culling, decreased and lost milk sales, vet-
erinary expenses, and additional labor (Hansen, 2000; 
Harder et al., 2006). Kelton et al. (1998) estimated the 
cost of several common health events ranging from $39 
per lactation with an event of cystic ovaries up to $340 
per case of left-displaced abomasum. Over the past 15 
yr, however, these economic costs may have drastically 
changed. More recent studies have looked at the aver-
age cost per case of specific hoof and leg disorders such 
as sole ulcers, digital dermatitis, and foot rot. The aver-
age cost per case of these events was estimated to be 
$216.07, $132.96, and $120.70, respectively (Cha et al., 
2010). These estimates accounted for factors such as 
milk loss, treatment cost, and decreased fertility. Other 
recent research estimated the factors that contribute to 
the cost of an incidence of mastitis. The average cost of 
clinical mastitis per case was approximately $179, with 
$115 of that the result of lost milk, $14 from increased 
mortality, and $50 from treatment costs (Bar et al., 
2008). 

  Genetic selection is an appealing tool for improvement 
of health traits. Difficulty is encountered, however, as 
no mandated or consistent recording system of health 
traits exists in the United States. In some European 
countries, recording of health events is mandatory. 
Genetic selection for increased disease resistance has 
been performed for more than 30 yr and the poten-
tial for genetic improvement in health-related traits 
has been demonstrated in Scandinavian cattle breeds 
(Philipsson and Lindhé, 2003; Abdel-Azim et al., 2005). 
Genetic improvement of clinical mastitis incidence has 
also been demonstrated in Nordic cattle (Heringstad 
et al., 2003; Philipsson and Lindhé, 2003). The lack of 
health-related phenotypes in the United States creates 
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an obstacle to genetic improvement. Several previous 
studies have confirmed the possibility of using on-farm 
recorded health information for genetic improvement. 
Zwald et al. (2004a) used on-farm recorded health data 
from 2001 through 2003 and concluded that this data 
would allow genetic selection to be possible. Prior re-
search was completed to analyze if producer-recorded 
data from a similar data set to the current study ac-
curately reflected the true incidences of health events 
after several editing constraints were put in place. 
Phenotypic relationships were also examined between 
common health events and compared with results from 
epidemiological studies to further validate the data 
(Parker Gaddis et al., 2012).

Although genetic improvement in some health traits 
has been demonstrated, progress is slow, especially 
when compared with the improvements achieved in 
production traits. Health traits are typically catego-
rized as being lowly heritable. Low sire reliabilities are 
also common for health traits due to a combination of 
low heritability and limited availability of phenotypes. 
Dense marker data have been shown in many studies 
to improve reliability of prediction (Harris and John-
son, 2008; Hayes et al., 2009; VanRaden et al., 2009). 
Increased availability of dense molecular marker data 
may allow progress to be achieved at a quicker rate, 
especially for lowly heritable traits. Marker informa-
tion is attainable at birth, which could decrease the 
generation interval required to achieve an acceptable 
reliability. Genomic selection methodologies are cur-
rently being widely investigated and implemented in 
dairy cattle breeding (VanRaden et al., 2009; Veerkamp 
et al., 2011), as well as in other species (Ostersen et 
al., 2011; Simeone et al., 2012); however, most of this 
research has involved traditional traits, such as those 
related to production (VanRaden et al., 2009; Olson et 
al., 2011).

One method of including SNP marker data into 
genetic analyses is the single-step method. Misztal 
et al. (2009) and Legarra et al. (2009) proposed the 
single-step method, as an alternative to multi-stage ap-
proaches. The single-step procedure replaces the pedi-
gree (A) and genomic (G) relationship matrices with 
a blended H matrix (Aguilar et al., 2010; Christensen 
and Lund, 2010) that combines the information from A 
and G. The H matrix can be implemented similarly to 
the A relationship matrix in BLUP analyses (Legarra 
et al., 2009). This allows a straight-forward application 
of genomic data to complicated models and complex 
data structures (Aguilar et al., 2010).

Several studies have incorporated functional traits 
along with production traits using genomic data 
(Brøndum et al., 2011; Koivula et al., 2012), although 
the vast majority of these were conducted outside the 

United States. The objective of the current study was 
to perform pedigree- and genomic-based analyses on 
producer-recorded health data to estimate variance 
components and heritabilities for health traits com-
monly encountered by dairy cows in the United States, 
thereby confirming a genetic component of major health 
events. A multiple-trait genetic analysis using pedigree 
data was completed to identify genetic relationships 
among common health events, including cystic ova-
ries (CYST), displaced abomasum (DSAB), ketosis 
(KETO), lameness (LAME), mastitis (MAST), me-
tritis (METR), and retained placenta (RETP). Sin-
gle-step methodology was used to incorporate genomic 
information into a multiple-trait analysis of common 
health events, using the estimates from pedigree-based 
analyses as starting values. Reliabilities were compared 
between the pedigree-based analyses and genomic-based 
analyses. Genetic correlations with more commonly re-
ported fitness traits, including daughter pregnancy rate 
(VanRaden et al., 2004), productive life (VanRaden 
and Wiggans, 1995), SCS, net merit (Cole et al., 2010), 
and milk yield, were also approximated.

MATERIALS AND METHODS

Voluntary producer-recorded health event data were 
available from Dairy Records Management Systems 
(Raleigh, NC) from US farms from 1996 through 2012. 
The health events included in the analyses were MAST, 
METR, CYST, DSAB, KETO, LAME, and RETP 
from cows of parities 1 through 5. Cows with records in 
later parities were required to have records for all prior 
parities. Data quality edits were applied as described in 
Parker Gaddis et al. (2012). Minimum and maximum 
constraints were imposed on the data by herd-year to 
avoid using records from herd-years that over- or un-
derreported an event. Extended lactations lasting up to 
400 d postpartum were included in the analyses under 
the assumptions that cows with extended lactations 
were likely to be those that had not become pregnant. 
This decreased fertility could potentially be attribut-
able to poor health, which could be reflected in the 
data. Production data included a variable indicating if 
a cow was removed from the herd during the lactation. 
Records being coded as anything other than a normal 
lactation were originally removed from the data set. 
These records included cows removed from the herd 
during lactation, potentially for health-related reasons. 
Analyses were later completed including these termi-
nated records, as no significant difference was found 
when terminated records were included. After edit-
ing, there were 134,226 total first-parity records from 
12,893 sires and 13,534 maternal grandsires. There 
were 174,069 total records from parities 2 through 5 
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for 100,635 cows from 11,481 sires and 11,716 maternal 
grandsires. A summary of the data structure by health 
event is shown in Table 1.

Genomic data from the Illumina BovineSNP50 Bead-
Chip (Illumina Inc., San Diego, CA) were available for 
7,883 sires. Standard filters were previously applied to 
the marker data, including removing SNP with minor 
allele frequencies less than 0.05 and removing SNP that 
were in complete linkage disequilibrium with other 
SNP, resulting in a final set for analysis of 38,416 SNP 
(VanRaden et al., 2009). There were 4,814 genotyped 
sires that had daughters with at least 1 health record 
in the final data set.

Pedigree-Based Analyses

Two multivariate analyses were completed: one using 
only first-parity records, and a second using records 
from parities 2 through 5. This was performed consider-
ing the biological differences found in first-parity ani-
mals compared with multiparous animals (Curtis et al., 
1985). The data set of later-parity records represents 
a selected subset including only cows that survived to 
their second calving. A multiple-trait threshold sire 
model was used to fit a 7-trait model for the following 
health events: MAST, METR, LAME, RETP, CYST, 
KETO, and DSAB. The model used for first parity 
records was

λ = Xβ + Zhh + Zss + e,

where λ represents a vector of unobserved liabilities to 
the given diseases; β is a vector of fixed effects includ-
ing overall mean and year-season; X is the correspond-
ing incidence matrix for the fixed effect; h represents 
the random herd-year effect, where h N h~ , ,0 2Iσ( )  with 

I representing an identity matrix and σh
2 representing 

the variance of herd-year; s represents the random sire 
effect, where s N s~ , ,0 2Aσ( )  with A representing the ad-

ditive relationship matrix and σs
2 representing the sire 

variance; Zh and Zs represent the corresponding inci-

dence matrices for the appropriate random effects; and 
e represents the random residual, modeled following 
N(0, I), fixing the variance equal to 1 to attain identifi-
ability. Herd-year and year-season were included as 
separate effects to avoid levels with very few or no re-
cords. A probit link was used to transform event inci-
dence to liability. A Monte Carlo Markov chain ap-
proach through Gibbs sampling was used to obtain es-
timates of variance components. The model for later 
parities was similar, but included a fixed effect of par-
ity (with levels 2 to 5) and a random permanent envi-
ronmental effect:

λ = Xβ + Zhh + Zss + Zpp + e,

where β is a vector of fixed effects including mean, 
parity, and year-season; p represents the permanent 
environment effect; and Zp represents the correspond-
ing incidence matrix. All other variables remained the 
same as previously described. Variance components 
and heritabilities were determined from parameter esti-
mates calculated using the THRGIBBS1F90 program 
(version 2.104; Tsuruta and Misztal, 2006). Repeatabil-
ity was calculated as 4 2 2 2 2 2σ σ σ σ σs p s p e+( ) + +( ), where 

σp
2 represents the permanent environmental variance 

and σe
2 represents the residual variance, for later-parity 

records. A total of 100,000 iterations were completed 
with the first 10,000 discarded as burn-in, saving every 
25 samples. Post-Gibbs analyses were completed using 
the POSTGIBBSF90 program (version 3.04; Misztal et 
al., 2002). Trace plots were inspected visually to ensure 
that convergence had been reached; in addition, 
Geweke’s convergence statistic (Geweke, 1992) was cal-
culated with the coda package (Plummer et al., 2006) 
in R version 2.15.1 (R Development Core Team, 2012). 
Posterior standard deviations were calculated for each 
estimate.

Posterior means of sire PTA were obtained on the 
liability scale and later converted to probabilities of dis-
ease as described by Zwald et al. (2006). Approximate 
reliabilities of estimated sire PTA were calculated us-

Table 1. Summary statistics for each health event of interest 

Health event

Number of records Number of year-seasons Number of herd-years

First parity Later parities First parity Later parities First parity Later parities

Cystic ovaries 78,408 100,982 58 55 2,789 2,855
Displaced abomasum 78,025 100,108 56 54 2,049 2,073
Ketosis 47,101 60,791 55 51 1,154 1,172
Lameness 88,835 104,552 57 55 2,707 2,762
Mastitis 103,585 125,332 58 57 3,198 3,255
Metritis 83,691 108,825 58 57 2,580 2,626
Retained placenta 82,666 105,474 56 54 2,419 2,526
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ing the ACCF90 program (version 1.67; Misztal et al., 
2002). Genetic correlations between each health trait 
and other more commonly reported fitness traits were 
approximated using the reliabilities of sire PTA fol-
lowing Calo et al. (1973). Additional traits considered 
included daughter pregnancy rate (DPR), productive 
life (PL), milk yield (MY), SCS, and net merit (NM). 
Approximate genetic correlations were calculated using 
the method of Calo et al. (1973):

 ˆ
,
r

RL RL

RL RL
g

i
i

n

i
i

n

i

1 2

1
1

2
1

1

=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

×

= =
∑ ∑

22
1

1 2

i
i

n
r

( )
×

=
∑

, , 

where ˆ
,
rg1 2 is the approximate genetic correlation be-

tween trait 1 and trait 2; RL1i and RL2i represent the 
reliabilities of trait 1 and trait 2, respectively, for sire i; 
and r1,2 represents the correlation between PTA for 
traits 1 and 2. The standard error of the approximate 
genetic correlation was calculated as described by Sokal 
and Rohlf (1995):
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where n represents the number of sires with records.

Genomic-Based Analyses

Genomic data were incorporated using a blended H 
matrix in a single-step procedure as implemented in the 
preGSf90 software (version 1.142; Aguilar et al., 2011). 
Further editing was applied as set by the default soft-
ware settings, resulting in genomic data being included 
for 7,883 sires with 37,713 markers. Default editing 
included exclusion of SNP with minor allele frequency 
less than 0.05, exclusion of SNP with call rate less than 
0.90, and exclusion of individuals with call rate <0.90. 
The G matrix was calculated and scaled following 
VanRaden (2008), using allele frequencies calculated 
from the available genotypes. The blended H matrix 
was incorporated into the same multiple-trait thresh-
old sire model as previously described above using the 
THRGIBBS1F90 program (version 2.104; Tsuruta and 
Misztal, 2006). A chain of 100,000 iterations was com-
pleted with 10,000 samples discarded as burn-in, saving 
every 25th sample. Post-Gibbs checks were carried out 
similarly to those described for the previous analysis.

Reliabilities of genomic PTA were estimated following 
Misztal et al. (2013). Reliabilities from pedigree-based 

multiple-trait analysis were used as reliabilities calcu-
lated without genomic information. These reliabilities 
were then converted to effective number of records for 
genotyped animals following the formula provided in 
Misztal et al. (2013):

 d reli pi
= −( )−⎡
⎣⎢

⎤
⎦⎥

α 1 1 1 , 

where α is the ratio of residual variance to genetic vari-
ance calculated from the pedigree-based multiple-trait 
analysis and relpi represents approximated reliabilities 
based only on pedigree information. The inverse matrix 
Q−1 was calculated as

 Q D I G A− − −
−

= + + −( )⎡
⎣⎢

⎤
⎦⎥

1 1
22
1

1
α , 

where D is a diagonal matrix composed of elements di, 
G−1 is the inverse genomic relationship matrix, and A22

1−  
is the inverse of the pedigree-based relationship matrix 
for genotyped animals only (Misztal et al., 2013). The 
genomic reliabilities were then approximated as shown 
below:

 rel qg
ii

i
= −1 α , 

where relgi  represented the approximate genomic reli-
ability and qii was the diagonal element of Q−1, corre-
sponding to the ith animal (Misztal et al., 2013).

RESULTS AND DISCUSSION

Heritabilities and genetic correlations (±posterior 
SD) from the pedigree-based analysis are shown in 
Table 2 for first-parity records. All traits exhibited a 
genetic component, although most had low heritabili-
ties. The highest heritability in first-parity records was 
0.22 found for both DSAB and RETP. The heritability 
of DSAB is similar to previously reported estimates 
(Neuenschwander et al., 2012; Uribe et al., 1995). Dis-
placed abomasum was also found to be the most herita-
ble health trait in a smaller data set that included data 
from fewer years and different organizations (Zwald 
et al., 2004a). The high heritabilities for DSAB and 
RETP may be partially explained by the severity of the 
event, with DSAB often requiring veterinary interven-
tion. Zwald et al. (2004b) found DSAB to be the most 
consistently recorded health event among producer-
recorded data. Discrepancies in diagnosis of DSAB 
and RETP are also minimal, which is likely to improve 
the consistency of reporting. Lower heritabilities were 
found for traits such as CYST and LAME, which are 
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much less likely to be recorded in a consistent manner. 
For example, producers may have different opinions re-
garding what constitutes an incidence of lameness that 
warrants being recorded.

Heritabilities and genetic correlations (±SD) from 
the pedigree-based analysis are shown in Table 3 for 
later-parity records. All heritabilities were similar to 
(CYST, LAME, and METR) or smaller than (DSAB, 
KETO, MAST, and RETP) the results from the first-
parity analysis (Table 2). The highest heritability was 
found for DSAB and the lowest heritability was found 
for CYST. Posterior estimates of permanent environ-
mental variance were small, ranging from 6.7 × 10−3 for 
RETP to 0.017 for CYST. Repeatabilities for the later-
parity records ranged from 0.02 for CYST and LAME 
to 0.13 for DSAB, and were lower than those reported 
by Gernand et al. (2012), with the exception of RETP, 
which was very similar. Discrepancies in estimates from 
different studies may be related to event severity or 
variations in recording consistency.

The strongest genetic correlation in first-parity records 
was between DSAB and KETO (0.66 ± 0.07), which is 
similar to correlations reported previously (Zwald et al., 
2004b; Koeck et al., 2012; Neuenschwander et al., 2012). 
The genetic correlation between DSAB and KETO in 
later parities was of similar magnitude (0.65 ± 0.15). 
Significant correlations between METR and RETP 
of 0.56 (±0.10) in first- and 0.69 (±0.10) later-parity 
records were found, which is smaller than a previously 

reported value of 0.79 (±0.32; Neuenschwander et al., 
2012). These correlation estimates were consistent with 
odds ratios previously reported from these data (Parker 
Gaddis et al., 2012).

Several diseases had negative correlations with CYST, 
but none were significant in first parity. The only trait 
in later parities with a significant (positive) correlation 
with CYST was METR. These spurious results may 
be the result of how the trait is recorded, the editing 
criteria used, or a combination of the 2. An incidence 
of CYST is likely to be reported following a veterinary 
visit, but such exams are not likely unless a cow has dif-
ficulty getting pregnant. It may be that CYST events 
actually affect the following lactation when the animal 
is being rebred, rather than the lactation when the event 
is recorded. Relationships between CYST and METR 
have been previously reported (Marion and Gier, 1968; 
Erb et al., 1981), supporting the significant genetic 
correlation estimated between CYST and METR from 
later-parity records. This may be an indication of the 
underlying reproductive health status of the cow, but 
questions about the consistency of reporting and data 
editing procedures introduce additional uncertainty to 
CYST-related results.

Heritabilities and genetic correlations (±SD) from 
the genomic-based analysis of first-parity records are 
shown in Table 4. The heritabilities of all traits were 
higher than in the pedigree-based analysis, with the 
exception of LAME, which remained the same. The 

Table 2. Estimated heritabilities (SD) on the diagonal with estimated genetic correlations below the diagonal from multiple-trait pedigree-based 
analysis with first-parity records 

Trait
Cystic  
ovaries

Displaced  
abomasum Ketosis Lameness Mastitis Metritis

Retained  
placenta

Cystic ovaries 0.03 (0.01)
Displaced abomasum −0.07 (0.15) 0.22 (0.03)
Ketosis −0.16 (0.16) 0.66 (0.07)* 0.09 (0.02)
Lameness −0.06 (0.24) 0.10 (0.18) 0.25 (0.19) 0.02 (0.005)
Mastitis 0.16 (0.17) 0.04 (0.11) 0.10 (0.12) 0.26 (0.17) 0.06 (0.01)
Metritis −0.25 (0.18) 0.22 (0.12) 0.22 (0.14) 0.07 (0.18) −0.22 (0.12) 0.04 (0.01)
Retained placenta 0.24 (0.18) 0.42 (0.11)* −0.01 (0.14) −0.16 (0.20) 0.33 (0.11)* 0.56 (0.10)* 0.22 (0.04)

*Genetic correlations significant at P < 0.05.

Table 3. Estimated heritabilities (SD) on the diagonal with estimated genetic correlations below the diagonal from multiple-trait pedigree-based 
analysis with later-parity records 

Trait
Cystic  
ovaries

Displaced  
abomasum Ketosis Lameness Mastitis Metritis

Retained  
placenta

Cystic ovaries 0.01 (0.005)
Displaced abomasum 0.25 (0.19) 0.12 (0.02)
Ketosis −0.02 (0.30) 0.65 (0.15)* 0.04 (0.01)
Lameness 0.33 (0.32) −0.04 (0.17) −0.01 (0.20) 0.02 (0.006)
Mastitis 0.15 (0.22) 0.02 (0.16) −0.20 (0.24) −0.15 (0.20) 0.03 (0.007)
Metritis 0.69 (0.15)* 0.38 (0.13)* 0.22 (0.26) 0.29 (0.17) −0.001 (0.18) 0.03 (0.006)
Retained placenta 0.11 (0.20) 0.10 (0.16) 0.22 (0.20) −0.16 (0.19) 0.02 (0.17) 0.69 (0.10)* 0.05 (0.01)

*Genetic correlations significant at P < 0.05.
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largest heritabilities were again found for RETP and 
DSAB. The correlation of DSAB with KETO was 
similar in pedigree- and genomic-based analyses. The 
correlation of RETP with METR was smaller (0.36 
± 0.15) in genomic-based analysis, but remained sig-
nificant. A significant correlation was found between 
DSAB and METR, which was significant only in later-
parity records using pedigree-based data. A significant 
correlation was found between CYST and LAME (0.49 
± 0.16), but results should be interpreted with caution 
because LAME is a highly subjective event. Large dis-
crepancies tend to exist in recording LAME; producers 
may only record certain cases, and these practices will 
depend largely on management routines (Zwald et al., 
2004b).

Heritabilities and genetic correlations (±SD) for 
genomic-based analysis of later-parity records are listed 
in Table 5. Heritability was similar to prior analyses and 
ranged from 0.02 (±0.01) for CYST up to 0.17 (±0.03) 
for DSAB. All heritabilities estimated for later parities 
with genomic information were larger than heritability 
estimates using only pedigree information. However, 
all heritabilities were larger for first- than later-parity 
genomic analyses. Significant genetic correlations were 
again found between KETO and DSAB (0.61 ± 0.12) 
and between METR and RETP (0.81 ± 0.06). No other 
correlations were significant in this analysis.

Estimates of heritability including genomic informa-
tion were similar to those estimated using pedigree 

information. Differences in heritability estimates be-
tween pedigree- and genomic-based analyses may be 
the result of differences in scale of the relationship 
matrices. Direct comparisons of estimates between the 
analyses are not possible, however, because the A ma-
trix and H matrix are produced using different base 
populations. The largest change between the 2 analyses 
was observed in reliability of sire PTA. The addition 
of genomic information improved the reliabilities of 
sire PTA for all health events, as shown in Table 6. 
The reliabilities for these traits were low in compari-
son with production traits; however, the improvement 
obtained from the addition of genomic information was 
substantial. The increases in average reliability ranged 
from 9 percentage points for RETP (55 to 64%) to 
15 percentage points for LAME (24 to 39%), which 
is consistent with results of VanRaden et al. (2009). 
Reliabilities reported in other studies are comparable. 
Brøndum et al. (2011) reported a genomic reliability 
for diseases unrelated to the udder ranging from 0.25 
to 0.43, depending on the population. Su et al. (2010) 
calculated an expected reliability of genomic EBV for 
diseases unrelated to the udder slightly higher at 0.59. 
A third study investigated different methods of calcu-
lating genomic predictions for production traits as well 
as MAST (Koivula et al., 2012). One model was similar 
to the single-step method; however, deregressed proofs 
were used as opposed to raw data. Validation reliabili-
ties for genomic breeding values of MAST in that study 

Table 4. Estimated heritabilities (SD) on the diagonal with estimated genetic correlations below the diagonal from multiple-trait genomic-based 
analysis with first-parity records 

Trait 
Cystic 
ovaries

Displaced  
abomasum Ketosis Lameness Mastitis Metritis

Retained  
placenta

Cystic ovaries 0.05 (0.01)
Displaced abomasum 0.01 (0.13) 0.32 (0.04)
Ketosis −0.06 (0.15) 0.65 (0.09)* 0.14 (0.03)
Lameness 0.49 (0.16)* −0.13 (0.14) 0.12 (0.17) 0.02 (0.005)
Mastitis 0.24 (0.14) 0.06 (0.10) 0.12 (0.12) 0.05 (0.15) 0.10 (0.01)
Metritis −0.30 (0.15) 0.29 (0.10)* 0.21 (0.13) 0.20 (0.19) −0.08 (0.12) 0.07 (0.01)
Retained placenta 0.17 (0.22) −0.09 (0.16) −0.21 (0.19) −0.28 (0.22) 0.05 (0.17) 0.36 (0.15)* 0.36 (0.08)

*Genetic correlations significant at P < 0.05.

Table 5. Estimated heritabilities (SD) on the diagonal with estimated genetic correlations below the diagonal from multiple-trait genomic-based 
analysis with later-parity records 

Trait
Cystic  
ovaries

Displaced  
abomasum Ketosis Lameness Mastitis Metritis

Retained  
placenta

Cystic ovaries 0.02 (0.01)
Displaced abomasum 0.26 (0.23) 0.17 (0.03)
Ketosis 0.09 (0.24) 0.61 (0.12)* 0.08 (0.02)
Lameness −0.36 (0.23) 0.001 (0.18) 0.03 (0.21) 0.03 (0.01)
Mastitis 0.54 (0.35) 0.06 (0.20) −0.01 (0.19) −0.31 (0.18) 0.05 (0.01)
Metritis −0.04 (0.21) 0.24 (0.15) 0.28 (0.21) 0.11 (0.18) −0.01 (0.15) 0.06 (0.01)
Retained placenta 0.24 (0.23) −0.07 (0.15) 0.26 (0.18) −0.20 (0.20) 0.12 (0.16) 0.81 (0.06)* 0.07 (0.01)

*Genetic correlations significant at P < 0.05.
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ranged from 0.15 to 0.17 (Koivula et al., 2012), which 
is lower than the reliability estimated for MAST in the 
current study.

The amount of increase in reliability from pedigree-
based analysis compared with genomic-based analysis 
varied among sires. The number of daughters with 
records varied for each sire and health event, with the 
maximum number of daughter records being 1,567 for 
MAST. The average number of daughters per sire across 
all health events was approximately 20. Although sires 
with at least 10 daughters had higher mean reliability 
overall, sires with less than 10 daughters had the great-
est improvement in reliability from the addition of ge-
nomic data. These results are expected. Sires with nu-
merous daughters generally have sufficient phenotypic 
data to achieve acceptable reliabilities. Young sires may 
not have had sufficient time to accrue the number of 
daughters needed to reach equivalent reliability levels. 
The trend for increase in reliability based on number of 
daughters for each sire is shown in Figure 1 for MAST. 
As the number of daughters increased, the amount of 
improvement in reliability decreased. Results from all 
other health events showed a similar pattern.

Sire posterior means of daughters’ probability to each 
disease are shown in Figure 2 for first-parity records. 
The mean probability can be considered the average 
percentage of bulls’ daughters expected to experience 
an incidence of a given health event under equivalent 
management conditions. The highest mean sire PTA 
of probability to a disease, 0.27, was found for RETP, 
which is similar to the value for METR reported by 
Zwald et al. (2004a), where METR included cases of 
either METR or RETP. The probability of MAST in 
first parity was lower than that reported by Zwald et al. 
(2004a), but was similar at 0.17 in later-parity records.

Approximate genetic correlations between health 
traits and more common fitness traits are listed in Table 
7 for first-parity data. All correlations were significant 

(P < 0.05) except between CYST and SCS, METR and 
SCS, DSAB and MY, and KETO and MY. Significant 
negative correlations were found between DPR and 
PL, with all health events in both first- (Table 7) and 
later- (data not shown) parity groups. Negative correla-
tions between health events and DPR and PL were also 
found by Zwald et al. (2004b), and support the proposi-
tion that increased genetic liability to disease is associ-
ated with decreased cow reproductive performance and 
longevity. Significant negative genetic correlations were 
also estimated between NM and all health events ex-
cept CYST. Previous research has shown a positive cor-

Table 6. Mean reliabilities of sire PTA computed with pedigree information and genomic information 

Health event

Pedigree information
Blended pedigree and genomic 

information

Overall  
gain3

Overall  
mean

Unproven  
sires1

Proven  
sires2

Overall  
mean

Unproven  
sires

Proven  
sires

Displaced abomasum 0.44 0.22 0.65 0.55 0.38 0.71 0.11
Ketosis 0.35 0.18 0.52 0.48 0.35 0.61 0.13
Lameness 0.24 0.15 0.32 0.39 0.31 0.47 0.15
Mastitis 0.39 0.26 0.52 0.51 0.40 0.61 0.12
Metritis 0.35 0.24 0.46 0.48 0.38 0.57 0.13
Retained placenta 0.55 0.42 0.67 0.64 0.54 0.73 0.09
1Unproven sires considered sires with less than 10 daughters.
2Proven sires considered sires with at least 10 daughters.
3The increase in mean reliability calculated as the difference in overall mean reliability between the blended 
model and the traditional (pedigree data only) model.

Figure 1. Trend for number of daughters plotted against increase 
in reliability for each sire in single-step analysis for mastitis.



Journal of Dairy Science Vol. 97 No. 5, 2014

GENOMIC ANALYSIS OF HEALTH EVENT DATA 3197

relation between CYST and milk production (Johnson 
et al., 1966; Zwald et al., 2004b); however, milk volume 
receives zero emphasis in the index for NM (Cole et al., 
2010). This could reflect a positive correlation between 
CYST and components of NM, such as protein yield. 
Although a consensus has not been reached, studies 
have estimated a positive genetic correlation between 
CYST and protein yield (Hooijer et al., 2001; Vanholder 
et al., 2006). The genetic correlations approximated in 
the current study also suggest a small, positive genetic 
correlation between MY and CYST. Somatic cell score 
was most highly correlated with MAST, having an ap-

proximate genetic correlation equal to 0.56 (±0.012). 
This was expected, given the well-known correlation of 
MAST with SCS (Carlén et al., 2004; Heringstad et al., 
2006; Gernand et al., 2012).

When selecting a genomic evaluation method, many 
aspects need to be considered. Low heritability traits 
will need a larger number of records to reach reliabili-
ties equivalent to those found for more heritable traits 
(Hayes et al., 2009). As more records are collected, 
it is also important that those records be consistent 
(Goddard and Hayes, 2009). Consistent recording of 
health data are more difficult than other traits due to 
subjectivity of diagnosis and reporting. Accumulation 
of more health records over time, as well as additional 
genotypes, is expected to improve genomic prediction, 
regardless of the method being used. This will allow 
more rapid genetic improvement to be made in lowly 
heritable yet economically important traits.

Advantages of single-step methodology, in addition 
to only requiring 1 step, include that traditional BLUP 
methodology can be used with only modification to the 
relationship matrix. This makes the single-step method 
easy to implement for complex data and models such as 
multivariate, threshold, and random regression models 
(Aguilar et al., 2010). The main disadvantage of the 
single-step method is that it can be more computation-
ally expensive due to having to form the H−1 matrix, 
although further methods have been developed to more 
efficiently compute this matrix (Aguilar et al., 2010). 
Reliabilities of prediction also have to be approximated 
because direct matrix inversion is infeasible for large 
data sets. This will become especially important as the 
number of genotyped animals increases (Misztal et al., 
2013).

Regardless of the method for recording and analyz-
ing health events, the health status of cows in a herd 
can have a large effect on profitability. The cost of 
a health event will largely depend on the severity of 
the event and the treatments that are used, as well as 
other factors not related directly to the individual cow, 
such as the current cost of milk and herd pregnancy 

Figure 2. Sire posterior mean PTA of daughters’ probability to 
each health event in first parity. CYST = cystic ovaries; DSAB = 
displaced abomasum; KETO = ketosis; LAME = lameness; MAST = 
mastitis; METR = metritis; RETP = retained placenta. The bottom 
and top bars of the boxes represent the first and third quartiles. The 
band within each box represents the median. The whiskers represent 
the lowest and highest data points within 1.5 times the interquartile 
range. Data points outside this range are represented by individual 
points.

Table 7. Approximated genetic correlations (SE) between fitness traits1 and net merit (NM) with results from 
pedigree-based analysis of first-parity records 

Trait DPR PL MY SCS NM

Cystic ovaries −0.18 (0.019)* −0.20 (0.019)* 0.24 (0.015)* 0.002 (0.018) 0.28 (0.015)*
Displaced abomasum −0.47 (0.021)* −0.47 (0.021)* 0.02 (0.017) 0.19 (0.016)* −0.35 (0.020)*
Ketosis −0.48 (0.021)* −0.48 (0.021)* 0.02 (0.017) 0.25 (0.015)* −0.40 (0.020)*
Lameness −0.19 (0.019)* −0.32 (0.020)* −0.09 (0.018)* 0.48 (0.013)* −0.44 (0.021)*
Mastitis −0.19 (0.019)* −0.27 (0.020)* 0.09 (0.017)* 0.56 (0.012)* −0.21 (0.019)*
Metritis −0.35 (0.020)* −0.18 (0.019)* −0.21 (0.019)* 0.006 (0.017) −0.37 (0.021)*
Retained placenta −0.44 (0.021)* −0.34 (0.020)* −0.05 (0.018)* 0.24 (0.015)* −0.30 (0.020)*
1DPR = daughter pregnancy rate; PL = productive life; MY = milk yield.
*Genetic correlation significant at P < 0.05.
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rate. An effective strategy to keep these costs as low 
as possible, irrespective of all other factors, may be to 
incorporate genomic selection for improved cow health. 
Before further progress can be accomplished, however, 
many challenges still exist. A unified recording system 
would greatly improve the consistency of health event 
reporting. The incorporation of genomic data will allow 
progress to be made at a more rapid rate, but that 
does not diminish the necessity for many phenotypes. 
Additional research will also need to further investigate 
the incorporation of genomic data. Several other meth-
ods using a Bayesian framework exist that were not 
explored herein. Little research has been conducted at 
this time that investigates the performance of genomic 
methodologies when applied to data from animals with 
low reliabilities for lowly heritable traits. Based on 
the improvement in reliability estimated in this study, 
health traits have the potential to greatly benefit from 
genomic data, which will in turn lead to increased prof-
itability for producers. Before this can occur, however, 
further research will need to explore the performance of 
the different methodologies.

CONCLUSIONS

This study demonstrated the potential for genetic 
improvement of health traits using producer-recorded 
data. Significant genetic components were estimated for 
all common health events investigated when evaluated 
using either pedigree data or pedigree data blended 
with genomic data. Health traits were lowly heritable, 
making consistent, long-term goals essential to achieve 
genetic improvement, regardless of the availability 
of genomic data. Significant correlations were found 
between RETP and METR, and between KETO and 
DSAB. The incorporation of genomic information using 
single-step methodology increased mean sire reliability 
by 9 to 15 percentage points. The largest improvement 
in sire reliability was found for sires with fewer than 10 
daughters with health records. Based on this, it would 
be feasible to use genomic information on young bulls 
to achieve acceptable reliabilities in a shorter period of 
time.
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