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ABSTRACT

The effects of reference population size and the 
availability of information from genotyped ancestors 
on the accuracy of imputation of single nucleotide 
polymorphisms (SNP) were investigated for Mexican 
Holstein cattle. Three scenarios for reference popula-
tion size were examined: (1) a local population of 2,011 
genotyped Mexican Holsteins, (2) animals in scenario 1 
plus 866 Holsteins in the US genotype database (GDB) 
with genotyped Mexican daughters, and (3) animals in 
scenario 1 and all US GDB Holsteins (338,073). Geno-
types from 4 chip densities (2 low density, 1 mid den-
sity, and 1 high density) were imputed using findhap 
(version 3) to the 45,195 markers on the mid-density 
chip. Imputation success was determined by comparing 
the numbers of SNP with 1 or 2 alleles missing and the 
numbers of differently predicted SNP (conflicts) among 
the 3 scenarios. Imputation accuracy improved as chip 
density and numbers of genotyped ancestors increased, 
and the percentage of SNP with 1 missing allele was 
greater than that for 2 missing alleles for all scenarios. 
The largest numbers of conflicts were found between 
scenarios 1 and 3. The inclusion of information from 
direct ancestors (dam or sire) with US GDB genotypes 
in the imputation of Mexican Holstein genotypes in-
creased imputation accuracy by 1 percentage point for 
low-density genotypes and by 0.5 percentage points for 
high-density genotypes, which was about half the gain 
found with information from all US GDB Holsteins. 
A larger reference population and the availability of 
genotyped ancestors improved imputation; animals 

with genotyped parents in a large reference population 
had higher imputation accuracy than those with no or 
few genotyped relatives in a small reference population. 
For small local populations, including genotypes from 
other related populations can aid in improving imputa-
tion accuracy.
Key words:  imputation, Mexican Holstein, ancestor 
genotype, reference population

INTRODUCTION

Genomic selection is a recent technology that has 
enhanced genetic improvement in dairy cattle but its 
success relies on numerous factors. The most important 
are methodology for calculating marker effects (Hayes 
et al., 2009; Daetwyler et al., 2010; VanRaden et al., 
2010), marker panel density (Solberg et al., 2008; Hayes 
et al., 2009), trait heritability (Hayes et al., 2009), and 
number of genotyped animals in the reference popula-
tion (Hayes et al., 2009). To improve the reliability of ge-
nomic predictions, increasing the number of genotyped 
animals is more important than using higher density 
panels (VanRaden et al., 2010). In developing countries 
such as Mexico, genotyping is still expensive and high-
density marker panels are generally more expensive 
than low-density panels. Using low-density panels is an 
alternative that may lead to more genotyped animals.

Because genomic technology has evolved rapidly, the 
number and sets of markers to be used for genomic 
prediction have changed over time (Hayes et al., 2009). 
To combine information based on different mark-
ers or marker densities, missing markers for animals 
genotyped with lower density panels are imputed from 
genotype information of relatives or from haplotypes of 
animals genotyped with higher density panels (Druet 
et al., 2010; VanRaden et al., 2010). Druet et al. (2010) 
showed that imputation efficiency is higher when the 
size of the reference population, marker density, and ex-
pected proportion of the genome inherited from the ref-
erence population are increased. Bouwman et al. (2014) 
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reported that the number of genotyped relatives has a 
direct effect on imputation accuracy for animals with-
out genotypes, and Khatkar et al. (2012) demonstrated 
the importance of considering genotyped relatives when 
imputing low-density genotypes, particularly when the 
sire’s genotype was not included in the reference geno-
types. Although different imputation methods with 
high accuracy have been implemented (Browning and 
Browning, 2011; VanRaden et al., 2011; Hickey et al., 
2012), the choice of the optimal method depends on 
population structure (Johnston et al., 2011).

Using imputation as part of genomic selection re-
duces genotyping costs and increases both the size of 
the reference population and the number of markers 
for which effects are estimated, which increases the 
reliability of genetic predictions and consequently the 
expected genetic improvement. Reducing genotyp-
ing cost also makes the technology more accessible to 
breeders (Berry and Kearney, 2011; VanRaden et al., 
2011). For dairy cattle, reliability of genomic predic-
tions using imputation varies according to trait and 
according to population size and structure. Reliability 
improvements of approximately 2 percentage points 
have been reported in simulation studies that included 
a set of 500,000 SNP per imputed genotype compared 
with a 50,000-marker subset (VanRaden et al., 2011).

Canadian and US dairy cattle genetics are widely 
used around the world. Using genotypes from those 
animals to impute local genotypes would increase the 
size of the local reference population considerably and 
could increase the accuracy of imputing genotypes, thus 
improving genomic evaluations in many countries. Such 
an improvement should be possible for Mexico, because 
Mexican Holstein breeders have depended heavily on 
US and Canadian genetics. The primary objective of 
this study was to determine the effect on imputation of 
Mexican Holstein genotypes from increasing the size of 
the Mexican Holstein reference population by adding 
Holsteins from the US genotype database. The effect 
of relatedness of animals in the reference population on 
imputation also was evaluated.

MATERIALS AND METHODS

Scenarios

Three imputation scenarios were defined based on 
source and number of genotyped animals. For scenario 
1, only genotypes of a local population of 2,011 geno-
typed Mexican Holsteins were included. For scenario 
2, genotypes of animals in scenario 1 plus genotypes 
of 866 Holsteins in the US genotype database (GDB) 
with genotyped Mexican daughters were included. For 
scenario 3, genotypes of animals in scenario 1 and all 

US GDB Holsteins available at the time of the study 
(338,073) were included.

Data

Genotypes. The genotyped Mexican Holstein popu-
lation (scenario 1) included 1,971 cows and 40 sires. For 
cows, 183 were genotyped with the Illumina BovineLD 
BeadChip v1.1 (6K; Illumina Inc., 2013), 277 with the 
GeneSeek Genomic Profiler BeadChip v1 (9K; Neogen 
Corp., 2013a), 686 with the Illumina BovineSNP50 
BeadChip v2 (50K; Illumina Inc., 2011), and 825 with 
the GeneSeek Genomic Profiler HD BeadChip (77K; 
Neogen Corp., 2013b). All Mexican sires had 50K 
genotypes. Of the US GDB Holsteins, 839 bulls and 
47 cows had genotyped daughters in Mexico (scenario 
2). All US GDB dams of genotyped Mexican daughters 
had 50K genotypes; the US GDB sires included 533 
US, 270 Canadian, and 22 European bulls with 50K 
genotypes and 10 US and 4 Canadian bulls with 77K 
genotypes. For scenario 3, 338,073 US GDB genotypes 
were included.

Pedigrees. Two different pedigree files were used 
in the analysis: 27,625 animals for scenarios 1 and 2; 
938,662 animals for scenario 3.

Imputation

Missing genotypes were predicted by combining pop-
ulation and pedigree haplotypes with findhap (version 
3) software (VanRaden, 2015). The imputation goal 
for all scenarios was to fill in any missing genotypes 
for the 45,195 SNP from the 50K chip that were then 
being used in US genomic evaluations. Of those 45,195 
SNP, 6,842 were included in 6K genotypes, 8,196 in 9K 
genotypes, and 28,048 in 77K genotypes, and a differ-
ent number of SNP was imputed for each chip density: 
38,353 for 6K genotypes, 36,999 for 9K genotypes, and 
17,147 for 77K genotypes. For imputation, genotypes 
were first coded as 0 = BB, 1 = AB, 2 = AA, or 5 = 
both alleles unknown. Then, SNP genotypes for each 
scenario were imputed, and the results were compared 
using SAS software (version 9.3; SAS Institute Inc., 
Cary NC).

A SNP genotype cannot always be determined 
through imputation. If only 1 parental allele could be 
determined (i.e., B and unknown allele or A and un-
known allele), then the SNP genotype was designated 
as M1. If neither parental contribution could be deter-
mined (i.e., both alleles missing), the SNP genotype was 
designated as M2. Coefficients of determination (R2) 
calculated as squared correlations between estimated 
and true SNP genotypes (VanRaden et al., 2011), per-
centages of missing alleles (M1 and M2), and differenc-
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es in imputed SNP (conflicts) between scenarios were 
used to determine the success of genomic imputation 
(imputation accuracy). Khatkar et al. (2012) reported 
that increasing the number of reference animals has 
a positive effect on imputation. Therefore, scenario 3 
was expected to be the most accurate for imputation, 
and scenarios 1 and 2 were compared with scenario 3. 
Conflict frequency was calculated as the percentage of 
50K SNP that were conflicts between scenarios.

Ancestor Genotypes

Genotyped animals were grouped by category of 
genotyped ancestors: animals without parental geno-
types; animals with dam or sire genotyped; and animals 
with dam, sire, and a grandsire genotyped. Animals 
with other combinations of genotyped ancestors were 
not considered because of small group sizes. Numbers 
of M1 and M2 SNP genotypes and SNP conflicts were 
compared using SAS within chip density by ancestor 
group. Only scenarios 2 and 3 were analyzed, because 
scenario 1 had too few genotyped ancestors to form 
groups.

Comparison of Imputed and True Genotypes

To determine the accuracy of imputed genotypes 
from low-density chips (6K and 9K), 10 groups were 
formed by random sampling of the 686 cows without 
replacement; each group contained 10 cows with 50K 
genotypes. Group size was limited to 10 cows to avoid 
excessive reduction in imputation accuracy from remov-
ing many high-density genotypes that are critical for 
accurate SNP imputation; a group size of 10 cows was 
considered large enough that a single animal could not 
have undue influence. For each animal, only 6K or 9K 
SNP were included in the 50K genotype, and the geno-
type was filled through imputation and compared with 
the original 50K genotype. The same animal groups 
were used for both chip densities. The total numbers 
of missing SNP (MM), which was calculated as M1 
+ M2, and conflicts were used to compare true and 
imputed genotypes.

RESULTS AND DISCUSSION

Imputation Accuracy

Imputation accuracy was improved by increasing 
geno type chip density and the number of reference 
animals (Figure 1). Imputation R2 using only local 
genotypes (scenario 1) were 96, 96, 99, and 99% when 
imputing from 6K, 9K, 50K, and 77K genotypes, respec-

tively. When information from US GDB Holsteins with 
genotyped Mexican daughters was added to the Mexi-
can genotypes (scenario 2), imputation R2 increased by 
almost 1 percentage point for 6K and 9K genotypes and 
by half a percentage point for 77K genotypes. When 
all US GDB Holstein data were included (scenario 3) 
and compared with the results for scenario 1, an in-
crease of almost 3 percentage points was observed for 
6K and 9K genotypes and 1 percentage point for 77K 
genotypes. As expected, no increase in imputation R2 
was found for 50K genotypes in any scenario because of 
the small number of SNP that actually were imputed. 
These results were consistent with those reported in 
other studies using the same (Wiggans et al., 2012) or 
different (Zhang and Druet, 2010; Johnston et al., 2011; 
Khatkar et al., 2012) imputation methods. All studies 
reported higher imputation accuracy with an increased 
number of reference animals.

Missing Alleles

Percentages of 50K alleles that were missing de-
creased as more animals were added to the reference 
population for both M1 and M2 SNP genotypes (Table 
1) regardless of chip density used for genotyping. 
Numbers of animals with missing alleles in ≥1 SNP 
genotype followed that pattern only for 6K, 9K, and 
77K M2 SNP genotypes. As expected, the correspond-

Figure 1. Accuracy of imputation to 45,195 (50K) markers for 
genotypes based on 4 genotyping chip densities (usable markers in 
common with 50K: 6K = 6,842; 9K = 8,196; 50K = 45,195; and 77K 
= 28,048) and 3 reference population scenarios (1 = 2,011 Mexican 
genotyped Holsteins; 2 = 2,011 Mexican genotyped Holsteins plus 886 
related Holsteins in the US genotype database; and 3 = 2,011 Mexican 
genotyped Holsteins and 338,073 Holsteins in the US genotype da-
tabase); accuracy was measured as the squared correlation between 
estimated and true genotypes and expressed as a percentage.
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ing M1 and M2 percentages by scenario were lower for 
50K genotypes than for SNP genotypes from other chip 
densities, especially for M1 SNP. These results can be 
explained partly by the imputation process, which first 
divides each chromosome into segments, determines 
the haplotypes, and then matches genotypes with the 
haplotype list (VanRaden et al., 2010, 2011). When the 
original genotype has more markers, haplotype match-
ing is more precise and imputation accuracy tends to 
be higher. In addition, the proportion of SNP to be 
imputed decreases as chip density increases.

The percentage of SNP genotypes designated as M1 
was larger than that for M2 for all scenarios regard-
less of chip density, except for animals with 50K geno-
types in scenario 1. The M1 percentage was largest for 
9K genotypes followed by 6K and 77K genotypes for 
scenarios 1 and 2. For scenario 3, the M1 percentage 
was largest for 6K genotypes followed by 9K and 77K 
genotypes. The M2 percentage generally decreased as 
the number of SNP to be imputed increased for all 
scenarios.

Conflicts

The number of detected conflicts increased as the 
number of genotyped animals or the number of imput-
ed SNP (Table 2) increased. Conflict frequency never 
exceeded 3.8%, possibly because the 6K chip was the 
lowest density chip studied. Conflicts have a greater 
effect on evaluation reliability than do missing markers 
because missing markers are replaced by population 

allele frequencies during the calculation of genomic 
evaluations (Wiggans et al., 2011).

Ancestor Genotypes

For animals grouped by availability of genotyped 
ancestors, Table 3 shows differences between scenarios 
2 and 3 for M1, M2, and conflict numbers by genotyp-
ing chip density and ancestor genotype group. Imputa-
tion problems for scenario 2 were more numerous with 
fewer genotyped ancestors, a pattern also reported by 
Johnston et al. (2011), who concluded that the number 
of correctly imputed genotypes increases as relatedness 
between genotyped ancestors and animals to be imputed 
increases. Other studies on genotype imputation from 
low to high density (e.g., Ma et al., 2013; Carvalheiro 
et al., 2014) reported only marginal benefits on imputa-
tion accuracy as the relatedness between imputed and 
reference animals increased. The benefit in this study 
may be caused partly by the imputation method used. 
In a comparison of 5 methods for imputing Swedish 
and Finnish Red Cattle marker genotypes, Ma et al. 
(2013) reported that IMPUTE2 (Howie et al., 2009) 
and Beagle (Browning and Browning, 2009) had the 
greatest imputation accuracy; however, the effect of re-
latedness on percentage of correctly imputed alleles was 
largest for findhap (version 2; VanRaden, 2015) and 
other imputation methods that used pedigree informa-
tion. Carvalheiro et al. (2014) used Beagle as well as 
FImpute (Sargolzaei et al., 2011) to study Nelore cattle; 
although they found higher imputation accuracies with 

Table 1. Percentages of 45,195 (50K) genotype alleles that were missing1 and numbers of animals with missing 
alleles by genotyping chip density and reference population scenario 

Genotyping  
chip density2 Scenario3 Animals (no.)

Missing 50K  
alleles (%)

Animals with missing 
alleles at ≥1 SNP 

genotype (no.)

M1 M2 M1 M2

6K 1 183 4.75 0.92 183 183
 2 183 3.16 0.05 183 180
 3 183 0.38 0.01 183 26
9K 1 277 6.03 0.94 277 277
 2 277 3.58 0.04 277 217
 3 277 0.22 0.02 277 25
50K 1 726 0.17 0.86 726 726
 2 1,598 0.21 0.03 896 802
 3 1,598 0.01 0.01 690 196
77K 1 825 4.36 1.13 820 820
 2 839 2.23 0.07 835 739
 3 839 0.13 0.02 815 153
1M1 = 1 allele missing; M2 = both alleles missing.
2Usable markers in common with 45,195 (50K): 6K = 6,842; 9K = 8,196; 77K = 28,048..
3Scenario 1 = 2,011 Mexican genotyped Holsteins; scenario 2 = 2,011 Mexican genotyped Holsteins plus 886 
related Holsteins in the US genotype database; scenario 3 = 2,011 Mexican genotyped Holsteins and 338,073 
Holsteins in the US genotype database.
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FImpute than with Beagle, they concluded that the 
optimal imputation method is unique to the genotyping 
chip and the population studied. When Khatkar et al. 
(2012) examined the effect of including sire genotype 
in the imputation process, a slightly lower allelic error 
rate was found when sire was included (2.61% with sire 
vs. 3.34% without sire). Similar findings were observed 
in this study, although the effect of including a parent 
was less for 50K and 77K genotypes than for 6K and 
9K genotypes (Table 3).

In addition to reference population size and relat-
edness of genotypes, chip density also determined 
imputation success between scenarios 2 and 3. Within 
genotyped ancestor group, animals with 50K genotypes 
had the fewest imputation problems, and differences 
between scenarios 2 and 3 decreased slightly with more 
ancestors with 50K genotypes (Table 3). Because im-
putation improvement pertains only to SNP that are 
not called during genotyping and the 50K chip contains 
all SNP, the number of correctly filled SNP increased 

slightly when genotypes for immediate family members 
were available.

The largest differences between scenarios 2 and 3 for 
imputation problems (17.2% of SNP) were found for 
animals with 6K genotypes and no parental genotypes 
(Table 3). However, comparison with the other geno-
typed ancestor groups was not possible because only 
animals with no parental genotypes had 6K genotypes. 
For animals with 9K genotypes, those with only sire or 
dam genotyped had more imputation problems than 
those with a grandsire also genotyped (14.8 vs. 3.3% 
of SNP). Animals with 77K genotypes had imputation 
problems for 7.8% of SNP for scenario 2 compared with 
scenario 3 when no parental genotypes were available, 
which decreased to 6.7% when a dam or sire genotype 
was available and to 1.6% when genotypes were avail-
able for dam, sire, and a grandsire. When the reference 
population is small, related genotyped animals with 
high-density genotypes should be included to increase 
imputation success.

Table 2. Numbers of imputed alleles for scenarios 1 and 2 that conflict with those imputed for scenario 31 and 
conflict frequencies by genotyping chip density 

Genotyping chip 
density2

Conflicts (no.) Conflict frequency3 (%)

Scenario 1 Scenario 2 Scenario 1 Scenario 2

6K 1,718 325 3.80 0.72
9K 1,705 506 3.77 1.12
50K 28 16 0.06 0.04
77K 746 689 1.65 1.52
1Scenario 1 = 2,011 Mexican genotyped Holsteins; scenario 2 = 2,011 Mexican genotyped Holsteins plus 886 
related Holsteins in the US genotype database; scenario 3 = 2,011 Mexican genotyped Holsteins and 338,073 
Holsteins in the US genotype database.
2Usable markers in common with 45,195 (50K): 6K = 6,842; 9K = 8,196; 77K = 28,048.
3Conflict frequency = 100(number of conflicts/45,195).

Table 3. Differences in the numbers and percentages of missing alleles1 and imputed allele conflicts for scenario 2 compared with scenario 32 by 
availability of genotyped ancestors and genotyping chip density 

Genotyped ancestors
Genotyping  
chip density3

Animals 
(no.)

Imputation difference

M1 M2 Conflicts All

No. % No. % No. % No. %

Neither dam nor sire 6K 18 2,897 6.4  40 0.1  4,827 10.7  7,764 17.2
50K 12 159 0.4  20 <0.1  168 0.4  347 0.8
77K 33 1,627 3.6  62 0.1  1,837 4.1  3,526 7.8

Dam or sire 9K 23 2,896 6.4  20 <0.1  3,762 8.3  6,678 14.8
50K 299 124 0.3  10 <0.1  136 0.3  270 0.6
77K 156 1,444 3.2  34 0.1  1,560 3.5  3,038 6.8

Dam, sire, and a grandsire 9K 20 584 1.3  6 <0.1  898 2.0  1,488 3.3
50K 36 85 0.2  8 <0.1  99 0.2  192 0.4
77K 47 583 1.3  11 <0.1  705 1.6  1,299 2.9

1M1 = 1 allele missing; M2 = both alleles missing.
2Scenario 2 = 2,011 Mexican genotyped Holsteins plus 886 related Holsteins in the US genotype database; scenario 3 = 2,011 Mexican genotyped 
Holsteins and 338,073 Holsteins in the US genotype database.
3Usable markers in common with 45,195 (50K): 6K = 6,842; 9K = 8,196; 77K = 28,048.
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Comparison of Imputed and True Genotypes

Imputed genotypes were validated only for scenarios 
1 and 2, because only extremely small differences were 
found between scenarios 2 and 3 and the computational 
demands of the imputation process would have been 
large for scenario 3. Within scenario, more MM were 
found for 9K genotypes than for 6K genotypes (Table 
4), whereas the number of conflicts was slightly higher 
for 6K genotypes. The percentage of markers with 1 or 
2 missing alleles (Table 4) was higher for 9K genotypes 
(7.2% for scenario 1 and 5.8% for scenario 2) than for 
6K genotypes (6.6 and 5.3%, respectively). However, 
6K genotypes had a higher conflict rate (2.8% for sce-
nario 1 and 2.3% for scenario 2) than did 9K genotypes 
(2.6 and 2.1%, respectively). Similar error rates (2.7%) 
were reported by Zhang and Druet (2010) when a panel 
of 6,000 markers was imputed to 45,836 markers using 
a reference group of 2,000 animals. Weigel et al. (2010) 
reported error rates of 3.6 to 5.8% for imputation from 
8,680 markers using a reference group of 2,542 Jerseys, 
which was slightly higher than the 9K conflict rates in 
this study. Although imputation for 9K genotypes is 
expected to be slightly more accurate than for 6K geno-
types (0.3 percentage points for all scenarios; Figure 1), 
the 6K and 9K genotyping chips are no longer available 
commercially.

CONCLUSIONS

Imputation efficiency in Mexican Holstein cattle 
based on M1, M2, and conflicts was affected by the size 
of the reference population used for imputation, the 
SNP density of the chip used for the original genotype, 
and the availability of ancestor genotypes. The inclu-
sion of information from direct ancestors with US GDB 
genotypes in the imputation of Mexican Holstein geno-
types increased imputation accuracy by 1 percentage 
point for low-density (6K and 9K) genotypes and by 
0.5 percentage points for high-density (77K) genotypes, 
which was about half the gain found with information 

from all US GDB Holsteins. Numbers of MM markers 
and imputation conflicts decreased when all US GDB 
genotypes were included. A larger reference population 
and the availability of genotyped ancestors improved 
imputation; animals with genotyped parents in a large 
reference population had higher imputation accuracy 
than those with no or few genotyped relatives in a 
small reference population. For small local populations, 
including genotypes from other related populations can 
be an important tool for improving accuracy of imputa-
tion.
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