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ABSTRACT

Genetic improvement of dairy cattle health through 
the use of producer-recorded data has been determined 
to be feasible. Low estimated heritabilities indicate 
that genetic progress will be slow. Variation observed 
in lowly heritable traits can largely be attributed to 
nongenetic factors, such as the environment. More 
rapid improvement of dairy cattle health may be at-
tainable if herd health programs incorporate environ-
mental and managerial aspects. More than 1,100 herd 
characteristics are regularly recorded on farm test-days. 
We combined these data with producer-recorded health 
event data, and parametric and nonparametric models 
were used to benchmark herd and cow health status. 
Health events were grouped into 3 categories for analy-
ses: mastitis, reproductive, and metabolic. Both herd 
incidence and individual incidence were used as depen-
dent variables. Models implemented included stepwise 
logistic regression, support vector machines, and ran-
dom forests. At both the herd and individual levels, 
random forest models attained the highest accuracy for 
predicting health status in all health event categories 
when evaluated with 10-fold cross-validation. Accuracy 
(SD) ranged from 0.61 (0.04) to 0.63 (0.04) when using 
random forest models at the herd level. Accuracy of 
prediction (SD) at the individual cow level ranged from 
0.87 (0.06) to 0.93 (0.001) with random forest models. 
Highly significant variables and key words from logistic 
regression and random forest models were also investi-
gated. All models identified several of the same key fac-
tors for each health event category, including movement 
out of the herd, size of the herd, and weather-related 
variables. We concluded that benchmarking health 
status using routinely collected herd data is feasible. 
Nonparametric models were better suited to handle 
this complex data with numerous variables. These data 

mining techniques were able to perform prediction of 
health status and could add evidence to personal expe-
rience in herd management.
Key words: herd health status, producer-recorded 
data, prediction, benchmarking

INTRODUCTION

To fully understand complex diseases, it is important 
to understand relationships between genotype, environ-
ment, and phenotype. Complex causal relationships 
have been identified between different diseases, culling, 
and production (Dhakal et al., 2015). Increased pro-
duction of dairy cattle has resulted in a subsequent 
decline in health and fertility traits (Esposito et al., 
2014). Concurrently, concern over animal welfare and 
use of antibiotics has steadily increased (Nyman et al., 
2007). Understanding these relationships may help us 
to better describe the disease process (Dhakal et al., 
2015). Genetic improvement of dairy cattle health has 
been determined to be feasible using producer-recorded 
data by several studies (Zwald et al., 2004; Parker Gad-
dis et al., 2014, 2012). Low estimated heritabilities of 
health events indicate, however, that genetic progress 
will be slow.

Variance observed in lowly heritable traits can largely 
be attributed to nongenetic or environmental factors. 
In typical genetic evaluations, adjustments for environ-
mental effects are accomplished by considering them 
fixed effects. This disregards effects of management and 
environmental conditions on genetic expression (Windig 
et al., 2005). It also ignores any associations that exist 
between genetic and environmental effects. Dechow and 
Goodling (2008) showed that heritabilities estimated 
using data from high-performing herds were higher 
than those from typical or poor-performing herds, sug-
gesting that rates of genetic gain may be higher when 
cows are provided with favorable environments for 
production. In addition, research has indicated that 
genetic correlations, such as between fertility and milk 
production, will depend upon herd environment (Win-
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dig et al., 2006). The question then arises as to whether 
more rapid improvement can be achieved if herd health 
programs incorporate environmental and managerial 
aspects.

Previous studies have investigated the effect of en-
vironmental characteristics on dairy cattle health. 
An early study was able to establish 5 farm “health 
profiles” according to the incidence levels of health 
disorders and farm structure data (Faye, 1992). Health 
disorders included infectious diseases of the foot, 
uterus, and teat, and calving disorders; farm structure 
was represented as traditional, intensive, or intermedi-
ate. Data were collected throughout 1979 from 83 dairy 
farms in France and included 25 specific health events 
in addition to herd management variables. Hierarchical 
classification was used to group the farms into similar 
classes and confirmed a relationship between farm type 
and herd health profile (Faye, 1992). Path analysis and 
multiple logistic regression were utilized to evaluate 
interrelationships between herd management practices 
and postpartum health disorders on 32 farms located 
in New York State (Correa et al., 1990). Disorders 
included dystocia, retained placenta, metritis, cystic 
ovary, milk fever, ketosis, left displaced abomasum, 
and mastitis. Management characteristics were col-
lected through a questionnaire provided to the person 
primarily responsible for care of the herd. A 2-stage 
analysis was performed to identify management factors 
and develop a path model of interrelationships between 
herd management and herd incidence rate (Correa et 
al., 1990).

More recent studies have been conducted incorporat-
ing herd characteristics in relationship to reproductive 
efficiency (Löf et al., 2007; Schefers et al., 2010), pro-
duction (Windig et al., 2005, 2006; Simensen et al., 
2010), and health (Svensson et al., 2006; Green et al., 
2007; Stengärde et al., 2012). Many of these studies 
have utilized surveys or questionnaires to assess herd 
characteristics (Correa et al., 1990; Sato et al., 2008; Hill 
et al., 2009), which can limit the amount of data that 
can be collected. Data collected from a designed study 
may not always reflect common management practices, 
thus limiting applicability (Coppa et al., 2013). Data 
can also be limited by the chosen analysis method. 
The majority of previous studies have used paramet-
ric statistical models to analyze herd characteristics 
(Svensson et al., 2006; Löf et al., 2007; Stengärde et al., 
2012), which can suffer from problems with multiple 
testing and collinearities with numerous variables (Sato 
et al., 2008). Alternatively, nonparametric methodolo-
gies have recently been investigated, such as principal 
component analysis (Windig et al., 2006) or common 
factor analysis (Enevoldsen et al., 1996), as well as 

regression-based decision trees (Schefers et al., 2010) to 
better handle numerous variables.

Farm staff or DHIA technicians report numerous 
herd characteristics regularly on farm test days. These 
reports include data on herd production, reproduction, 
genetics, udder health, and feed costs (Dairy Records 
Management Systems, 2014). Additional environmental 
data can be accessed through online databases such 
as the National Climatic Data Center (www.ncdc.noaa.
gov), the United States Census Bureau (www.census.
gov), and the United States Geographical Survey (www.
usgs.gov). The availability of numerous variables from 
field data presents analysis challenges ranging from 
increased data preprocessing to increased computing 
time. Although the majority of prior research has been 
conducted with parametric statistical methods (Windig 
et al., 2005, 2006; Sato et al., 2008), a more flexible ap-
proach might be possible when analyzing large numbers 
of variables utilizing data mining techniques. Data min-
ing allows patterns to be explored and is increasingly 
employed because of the explosion of data availability 
in many fields (Sullivan, 2012). The objective of this 
study was to utilize parametric and nonparametric 
methods to explore prediction of herd health status. 
Routinely collected herd summary data were used for 
benchmarking health status at the individual and herd 
level.

MATERIALS AND METHODS

Data

The DHI-202 Herd Summary provides a “comprehen-
sive herd analysis and management report including 
production, reproduction, genetics, udder health, and 
feed cost information” (Dairy Records Management 
Systems, 2014). Data are collected by farm staff or 
DHI technicians and compiled each test day. Catego-
ries of data include production, income, and feed cost 
summary; miscellaneous herd information; reproduc-
tive summary of current breeding herd; reproductive 
summary of total herd; birth summary; yearly repro-
ductive summary; cows to be milking, dry, or calving 
by month; stage of lactation profile; identification and 
genetic summary; production by lactation summary; 
current SCC summary; dry cow profile; yearly sum-
mary of cows entered and left the herd; and yearly pro-
duction and mastitis summary. An example DHI-202 
Herd Summary report is included in the supplemen-
tary material (Supplementary Figure S1; http://dx.doi.
org/10.3168/jds.2015-9840); detailed information on 
the report can be found at www.drms.org. Data were 
available from 2000 through 2011 from Dairy Records 
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Management Systems (Raleigh, NC). Four months of 
collected records were included for each year: March, 
June, September, and December. Each herd summary 
contained over 1,100 variables. Number of contributing 
herds varied from 647 to 1,418, depending on year and 
month of reporting.

Supplementary data were acquired from publicly 
available databases. The National Oceanic and Atmo-
spheric Administration (NOAA) National Climatic 
Data Center (NCDC) provides information regarding 
temperatures, precipitation, degree-days, and drought 
indices from 1895 through the present (Diamond et al., 
2013). Monthly summaries were obtained from NCDC 
Quality Controlled Local Climatological Data (http://
cdo.ncdc.noaa.gov/qclcd/) from land-based data sets 
for each month and year of available herd summary 
data. The NCDC provides geographic coordinates for 
each land-based station. Geographic coordinates were 
approximated for each herd based on herd Zip code 
using the R (R Development Core Team, 2012) pack-
age “zipcode” (Breen, 2012). Weather data from the 
weather station located closest to each herd was merged 
with herd characteristic data. The land-based weather 
station located nearest to each herd was determined 
utilizing the “geosphere” package (Hijmans et al., 2012) 
of R (R Core Team, 2014) and based on distance be-
tween geographic coordinates.

Estimates of population size were obtained on a 
county basis from the United States Census Bureau 
website (www.census.gov). Intercensal estimates from 
2000 through 2010 were produced by updating the 
Census 2000 counts with estimates for components of 
population change. Components of population change 
included factors such as births to US women, deaths 
of US residents, and migration. Estimated population 
change was reconciled with counts from the 2010 Cen-
sus to produce a consistent time-series of population 
estimates from 2000 to 2010 (United States Census 
Bureau, 2012). Census data were combined with herd 
characteristic data based on reported county of herd.

Voluntary producer-recorded health event data were 
available from Dairy Records Management Systems 
(Raleigh, NC) from US farms from 2000 through 2012. 
These data were matched to available production 
data. Both health and production data sets were ed-
ited following the general editing procedures described 
in Parker Gaddis et al. (2012). For a herd-year to be 
considered as reporting a health event, each herd-year 
had to report at least one incidence. Cows with at 
least one occurrence of a health event were coded as 
“1” for the respective event, and “0” otherwise. Health 
events included for analyses were hypocalcemia, cystic 
ovaries, digestive problems, displaced abomasum, ke-

tosis, mastitis, metritis, and retained placenta. These 
events were grouped into 3 main categories based on 
their relationship (see Dhakal et al., 2015): mastitis, 
metabolic (hypocalcemia, digestive problems, displaced 
abomasum, ketosis), and reproductive (cystic ovaries, 
metritis, and retained placenta). Health events were 
combined with herd characteristics based on date of 
health event occurrence. Date of each health event was 
rounded to the nearest month using the R package 
“lubridate” (Grolemund and Wickham, 2011). Events 
occurring in January, February, or March were merged 
with herd characteristic summaries from March; events 
occurring in April, May, or June were merged with 
herd characteristic summaries from June; events occur-
ring in July, August, or September were merged with 
herd characteristic summaries from September; and 
events occurring in October, November, or December 
were merged with herd characteristic summaries from 
December. This is not a perfect method; however, we 
believe it to be a reasonable approach for combining all 
the available data.

Data Preprocessing

A correlation analysis was performed as an initial 
step to reduce the dimensionality of the data and 
eliminate high correlations between variables. This was 
applied to each section of the DHI-202 Herd Summary, 
as well as the weather data, using the R package “caret” 
(Kuhn, 2013). Briefly, a function was used to determine 
highly correlated variables by searching the correlation 
matrix. When 2 variables had a correlation >0.90, the 
function removed the variable that had the largest 
absolute correlation averaged across all variables. Ad-
ditional variable editing was performed to ensure that 
no variables were linear combinations of other variables 
in the data set. The “caret” package (Kuhn, 2013) of 
R was also used for this; it uses the QR decomposition 
of the matrix to determine sets of linear combinations. 
Fifteen variables were removed to eliminate any linear 
combinations within the data set. Also, any variables 
with near zero (at least 95% of records with the same 
value) or zero variance were removed from the data. 
The above editing reduced the size of the final data set 
to 3,693,778 cow records with 829 variables.

Missing records also had to be handled before sta-
tistical modeling could be performed. The distribution 
of missing records within each variable was examined 
to estimate a reasonable threshold of missing data be-
yond which a variable would be excluded. Based on 
this, variables with >50% missing observations (n = 
70) were excluded from further analyses. Remaining 
missing records were imputed using an iterative princi-



Journal of Dairy Science Vol. 99 No. 2, 2016

BENCHMARKING DAIRY HERD HEALTH STATUS 1301

pal component analysis algorithm (Husson and Josse, 
2012). Briefly, missing values were initialized with the 
overall mean of each variable. A principal component 
analysis was then performed on this data set iteratively 
until convergence was reached to estimate missing val-
ues. Once a complete data set was created, lactational 
incidence rate (LIR) was calculated for each health 
event by herd-year as number of affected lactations per 
lactations at risk:

 LIR
LAC
LAC

d

t
= ,  

where LACd indicated number of first occurrences of a 
specific health event in a lactation, and LACt indicated 
number of lactations at risk (Kelton et al., 1998). Lac-
tations at risk were considered the total number of cow 
lactation records that had the potential to experience 
a health event of interest. For this, the herd had to be 
considered actively recording the health event during 
the cow’s lactation.

Analyses

Analyses were performed at both the herd and in-
dividual levels. For herd-based analyses, the objective 
was not to estimate herd disease incidence precisely. 
Conversely, it may be more informative to predict 
whether a herd has incidence below or above average, 
and which variables affect this incidence. To evaluate 
each model’s ability to classify herds in this way, herd 
incidence was converted to a binary indicator. Prelimi-
nary analyses investigated several methods of splitting 
the data. Herds with event incidence below the median 
incidence of all herds were classified as having “low” 
incidence; herds with event incidence above the median 
incidence of all herds were classified as having “high” 
incidence. Analyses performed at the individual level 
used a binary indicator, where “0” represented no in-
cidence of a health event during a lactation and “1” 
represented at least one incidence of a respective health 
event during a lactation.

To evaluate the predictive ability of each model 
fairly, data were divided into training and prediction 
subsets. Cross-validation was performed using 2 differ-
ent splitting methods. The first cross-validation scheme 
split the data into approximately 75% training and 
25% validation based on year of health event occur-
rence. This was done to replicate data accumulation 
as it typically occurs in the dairy industry. Training 
data consisted of records through 2009; validation data 
consisted of records from 2010 and later. True 10-fold 

cross-validation was also performed to have a more sta-
tistically sound evaluation for comparative purposes.

Initial analyses fit a parametric model for each event 
category using forward and reverse stepwise regression. 
The “step” function of R (R Core Team, 2014) was used 
to test variables and determine the best final model 
based on the Akaike information criterion (AIC) using 
the training data set. Final models were then fit with 
the selected variables following the model shown below:

 λ = β0 + β1x1 + … + βnxn + e, 

where λ represents a vector of unobserved liabilities to 
the given disease category, β0 represents the intercept, 
βi represents the regression coefficient for trait i, xi is 
the observed value for the ith trait, and e represents 
random residual, modeled following N(0, I), fixing the 
variance at 1 to attain identifiability. Prediction ability 
of this model was evaluated by fitting the model with 
the validation data set(s).

Although logistic models are often favored for their 
simplicity, they do have disadvantages. Logistic regres-
sion is a form of linear model, which assumes that mod-
el residuals follow a normal distribution, which may 
not always be a valid assumption. They also encounter 
difficulties when multicollinearities exist. Because of 
these disadvantages, several nonparametric algorithms 
were explored. Support vector machines (SVM) were 
selected as a nonparametric classification algorithm. 
Support vector machines were developed from founda-
tions of robust regression (Kuhn and Johnson, 2013). 
Briefly, an SVM model maps response variables to a 
higher-dimensional space that contains a “maximal 
separating hyperplane.” The response variable should 
separate across this hyperplane into correct classifica-
tions (Sullivan, 2012). Different kernel functions can be 
used in an SVM model (e.g., linear, polynomial, radial 
basis function), allowing for great flexibility (Kuhn and 
Johnson, 2013). Two different kernel functions were 
used in these analyses: a linear kernel and a radial basis 
kernel (RBF). The SVMperf software (version 3.0) was 
utilized to fit SVM models (Joachims, 2006). The soft-
ware consists of a learning module (svm_perf_learn) 
and a classification module (svm_perf_classify) that 
were used for training and prediction, respectively.

Several machine learning algorithms were also ex-
plored before analysis. Tree models are one of the most 
widely implemented data mining techniques (Sullivan, 
2012). The inherent structure of these models lends 
them easy interpretation. Tree models also implicitly 
perform feature selection, making them ideal for data 
with many variables (Kuhn and Johnson, 2013). One 
such algorithm first proposed by Breiman (2001) is ran-



1302 GADDIS ET AL.

Journal of Dairy Science Vol. 99 No. 2, 2016

dom forest (RF), which was used as a machine learn-
ing algorithm herein. Random forest is an ensemble 
algorithm that fits many decision trees to bootstrapped 
samples of a data set and then averages these deci-
sion trees to create a final predictive model (Breiman, 
2001). These models are also ideal as they are robust 
to over-fitting (González-Recio and Forni, 2011). The 
“bigrf” package (Lim et al., 2014) of R (R Core Team, 
2014) was used to fit RF models to the data.

Measures of predictive ability included accuracy, 
sensitivity, and specificity. Accuracy was calculated as 
the sum of true positives and true negatives divided by 
the sum of positive and negative incidences. Sensitiv-
ity, or true positive rate, was calculated as number of 
positive incidences correctly identified divided by the 
total number of positive incidences. Specificity, or true 
negative rate, was calculated as the number of negative 
incidences correctly identified divided by the total num-
ber of negative incidences (Fawcett, 2006). A common 
measure that combines both sensitivity and specificity 
is the receiver operating characteristic (ROC) curve. A 
perfect model would have 100% sensitivity and speci-
ficity, which when viewed graphically, is a single step 
from 0% sensitivity and specificity to 100% sensitivity 
and specificity. The area under the ROC curve (AUC) 
would be equal to 100%. Alternatively, a model that 
performs no better than random chance would have a 
perfectly diagonal ROC curve and AUC would be equal 
to 50%. Receiver operating characteristic curves were 
produced as an alternative to examine model predictive 
ability.

RESULTS AND DISCUSSION

Summary statistics for each individual health event 
are included in Table 1. Data encompassed years 2000 
through 2011 and included Ayrshire, Brown Swiss, 
Guernsey, Holstein, Jersey, and crossbred herds. The 
number of states reporting data ranged from 35 to 
45, depending on the health event. The most common 
herd size fell in a range of 100 to 299 cows; however, 

data included herds with <50 cows and herds with 
>1,000 cows, with a maximum herd size of over 5,500 
cows. A total of 2,403 herd-years reported mastitis 
incidences. The overall median incidence of mastitis 
was 24%, which falls within the range of previously 
reported incidence rates (Parker Gaddis et al., 2012). 
There were 2,290 herd-years reporting health events in 
the metabolic category, with a median incidence rate 
equal to 8%. The reproductive category had 3,191 herd-
years reporting, with a median incidence rate of 18%. 
Because these health event data were extracted from 
producer-recorded information, we cannot conclusively 
discern between clinical and subclinical incidences.

Logistic Regression—Herd Level

Stepwise logistic regression was used to identify sig-
nificant variables to be included in a final logistic model 
for each category based on Akaike information crite-
rion. These parametric models are commonly used for 
binary traits and served as a base for comparison with 
the nonparametric models. The number of variables 
selected for each model differed depending on health 
category: 82, 111, and 145 for mastitis, reproductive, 
and metabolic events, respectively. This is a substantial 
reduction from the initial number of variables. Descrip-
tions of the selected variables are further discussed 
below.

Logistic regression had the lowest prediction ac-
curacy among models for mastitis, reproductive, and 
metabolic events when data were split into training 
and validation sets by year. It is interesting to note 
that logistic regression models had the highest accuracy 
in the training data sets for all event categories. The 
logistic regression models were not capable, however, 
of predicting new records accurately, possibly due in 
part to over-parameterization. When a model is over-
parameterized, it is prone to overemphasizing patterns 
that are only characteristic of the training data (Kuhn 
and Johnson, 2013). Despite very high predictive abil-
ity with training data, performance declines drastically 

Table 1. Summary statistics for each individual health event including total number of records, total number 
of herds reporting, median lactational incidence rate (LIR), and total number of states reporting

Health event
No. of  
cows

No. of  
records

No. of  
herd-years

Median  
LIR

No. of states  
reporting

Hypocalcemia 142,319 242,010 887 0.026 35
Cystic ovaries 216,115 363,919 2,065 0.119 39
Digestive problems 188,119 310,862 981 0.049 39
Displaced abomasum 215,064 370,833 1,267 0.050 36
Ketosis 141,625 234,597 679 0.065 31
Mastitis 284,957 494,506 2,403 0.245 45
Metritis 225,357 378,097 1,528 0.118 39
Retained placenta 204,962 316,490 1,278 0.083 41
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when the model is exposed to new data. When data 
were evaluated using true 10-fold cross-validation, lo-
gistic regression was typically neither the best nor the 
worst model. Predictive ability when data were split 
by year of occurrence is included in Table 2; predictive 
ability when data were evaluated by true 10-fold cross-
validation is included in Table 3. Predictive ability 
depicted by ROC curves is shown in Figures 1 and 2 for 
cross-validation performed based on year and for true 
10-fold cross-validation, respectively. Because accuracy 
reflects a combination of prediction measures, sensitiv-

ity and specificity measures may be more informative. 
Logistic regression models tended to have higher speci-
ficity compared with sensitivity for all health event cat-
egories when data were split based on year (Table 2). 
Logistic regression models were better able to identify 
low incidence herds versus high incidence herds for all 
health event categories when data were split based on 
year.

The accuracy of prediction when fitting a logistic 
regression model for herd-level incidence was slightly 
below 50% for all health event categories when data 

Table 2. Summary of model performance1 for discretized herd incidence of mastitis, reproductive, and metabolic health events when data are 
split by year

Health events
Accuracy 
(Training)

Sensitivity 
(Training)

Specificity 
(Training)

Accuracy 
(Validation)

Sensitivity 
(Validation)

Specificity 
(Validation)

Mastitis
 Stepwise regression 0.71 0.65 0.76 0.43 0.25 0.82
 SVM (linear) c = 0.01 0.66 0.61 0.70 0.49 0.41 0.66
 SVM (RBF) c = 70.0 0.68 0.68 0.69 0.55 0.54 0.58
 Random forest2 0.63 0.53 0.73 0.48 0.32 0.81
Reproductive
 Stepwise regression 0.71 0.67 0.75 0.42 0.21 0.83
 SVM (linear) c = 0.01 0.67 0.64 0.70 0.47 0.29 0.83
 SVM (RBF) c = 60.0 0.63 0.65 0.62 0.56 0.51 0.65
 Random forest2 0.66 0.58 0.73 0.43 0.19 0.92
Metabolic
 Stepwise regression 0.78 0.74 0.81 0.46 0.40 0.61
 SVM (linear) c = 0.01 0.67 0.62 0.71 0.55 0.55 0.54
 SVM (RBF) c = 60.0 0.67 0.62 0.69 0.54 0.47 0.71
 Random forest3 0.67 0.57 0.76 0.53 0.82 0.40
1SVM (linear) = support vector machine with linear kernel; SVM (RBF) = support vector machine with radial basis function kernel; c = regu-
larization parameter.
2Random forest model for health event category used 25 trees.
3Random forest model for health event category used 40 trees.

Table 3. Summary of model performance for discretized herd incidence of mastitis, reproductive, and metabolic health events averaged across 
10-fold cross-validation results (SD)

Health events
Accuracy 
(Training)

Sensitivity 
(Training)

Specificity 
(Training)

Accuracy 
(Validation)

Sensitivity 
(Validation)

Specificity 
(Validation)

Mastitis
 Stepwise regression 0.70 (0.01) 0.69 (0.01) 0.72 (0.01) 0.59 (0.04) 0.57 (0.06) 0.61 (0.06)
 SVM (linear) c = 0.01 0.67 (0.006) 0.63 (0.01) 0.70 (0.01) 0.61 (0.04) 0.57 (0.06) 0.65 (0.04)
 SVM (RBF) c = 70.0 0.66 (0.009) 0.68 (0.03) 0.63 (0.03) 0.55 (0.02) 0.59 (0.06) 0.52 (0.06)
 Random forest2 0.58 (0.02) 0.58 (0.03) 0.58 (0.03) 0.61 (0.04) 0.62 (0.06) 0.61 (0.05)
Reproductive
 Stepwise regression 0.72 (0.02) 0.71 (0.02) 0.72 (0.02) 0.59 (0.02) 0.58 (0.04) 0.59 (0.02)
 SVM (linear) c = 0.01 0.65 (0.003) 0.65 (0.009) 0.66 (0.01) 0.61 (0.04) 0.60 (0.03) 0.62 (0.05)
 SVM (RBF) c = 60.0 0.64 (0.008) 0.64 (0.03) 0.64 (0.04) 0.55 (0.02) 0.55 (0.06) 0.56 (0.06)
 Random forest2 0.59 (0.02) 0.59 (0.02) 0.59 (0.03) 0.62 (0.04) 0.62 (0.05) 0.63 (0.04)
Metabolic
 Stepwise regression 0.75 (0.01) 0.74 (0.01) 0.76 (0.01) 0.61 (0.04) 0.60 (0.05) 0.61 (0.05)
 SVM (linear) c = 0.01 0.67 (0.006) 0.65 (0.01) 0.69 (0.01) 0.61 (0.04) 0.59 (0.07) 0.64 (0.04)
 SVM (RBF) c = 60.0 0.67 (0.01) 0.62 (0.02) 0.73 (0.03) 0.58 (0.01) 0.52 (0.04) 0.64 (0.04)
 Random forest3 0.60 (0.02) 0.60 (0.04) 0.60 (0.02) 0.63 (0.04) 0.63 (0.06) 0.62 (0.06)
1SVM (linear) = support vector machine with linear kernel; SVM (RBF) = support vector machine with radial basis function kernel; c = regu-
larization parameter.
2Random forest model for health event category used 25 trees.
3Random forest model for health event category used 40 trees.
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were split based on year. It is important to note here 
that accuracy is a combination of sensitivity and speci-
ficity. The low accuracy in this case was due primarily 
to poor prediction of low-health herds, as shown in 
Table 2. These models were able to correctly identify 
high-health herds 60 to 80% of the time. When data 
were split for true 10-fold cross-validation, accuracy 
was approximately 0.60 for all health events (Table 3). 
Low accuracy was expected because logistic regression 
had the least flexibility of the models used. Values for 

specificity and sensitivity for all health events in true 
cross-validation were very similar.

In addition to prediction of health status, logistic 
regression models were able to identify significant vari-
ables in determining health status. Logistic regression 
models accomplish this by evaluating statistical signifi-
cance of each variable. The values were averaged over 
cross-validation folds. The 25 variables with largest 
absolute effect size selected by each model are shown in 
Supplementary Table S1 (http://dx.doi.org/10.3168/
jds.2015-9840). In general, the data set variables had 

Figure 1. Receiver operating characteristic (ROC) curves for dis-
cretized herd incidence of mastitis, reproductive, and metabolic health 
events when data are split by year.

Figure 2. Receiver operating characteristic (ROC) curves for dis-
cretized herd incidence of mastitis, reproductive, and metabolic health 
events averaged across 10-fold cross-validation results.
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lengthy, descriptive names. To better discern impor-
tant factors identified by the models, key words from 
significant variables were combined in a “word cloud” 
or weighted list (Fellows, 2014). The size of each key 
word in the word cloud corresponds to the number of 
times that particular word was present in significant 
variables. Word clouds for key words from the top 25 
variables selected by logistic regression models are in-
cluded in the supplementary materials (Supplementary 
Figure S2; http://dx.doi.org/10.3168/jds.2015-9840).

At the herd level, key words identified most often 
for mastitis using the logistic regression model included 
SCS and mastitis, calving, and herd turnover. Herd 
turnover reflects all cows leaving the herd, not neces-
sarily cows leaving the herd due to illness. Key words 
identified most often for metabolic events included herd 
turnover and production stage. Finally, key words iden-
tified most often for reproductive events included SCS, 
herd turnover, and days open. Although there is overlap 
in variables selected for each category, such as animals 
leaving the herd, some key words were identified that 
were intuitively expected (e.g., SCS and mastitis).

Logistic Regression—Individual Level

Logistic regression models were also attempted for 
records at the individual level. Due to the large size 
of the data set, a variable selection procedure was 
performed before stepwise logistic regression to further 
reduce the dimensionality of the data. The top 100 
variables were provided to the stepwise procedure as 
described for the herd-level analyses. Despite this ad-
ditional preprocessing, these models still required an 
unrealistic amount of time to determine a final model 
(with one model running for more than 90 d without 
identifying a final model). Due to the amount of time 
these models required, we determined that fitting these 
models for practical applications would be unfeasible 
and results will not be discussed further.

Support Vector Machine—Herd Level

Support vector machine models improved predictive 
performance over logistic regression for mastitis and 
reproductive events when data were split based on 
year, as shown in Table 2. Accuracy of prediction when 
splitting data based on year of occurrence and fitting 
a linear kernel was 0.49, 0.47, and 0.55 for mastitis, re-
productive, and metabolic events, respectively. Figure 
1 includes ROC curves for SVM models with linear 
and RBF kernels when data were split based on year 
of occurrence. Accuracy of prediction when data were 
split based on year increased when using a RBF kernel 
for mastitis and reproductive events but not metabolic 

events. Accuracy of prediction was higher for all cat-
egories when data were randomly split and a linear ker-
nel was used for the SVM model (Table 3). Evaluation 
of true positive and negative rate revealed that linear 
SVM models had higher specificity in all but one case 
(linear SVM with metabolic events) when data were 
split based on year, ranging from 0.54 for metabolic 
events to 0.83 for reproductive events in the prediction 
data set. This indicates that the models were better 
able to correctly classify herds with a low incidence 
of health events. Lower results for sensitivity with the 
SVM models, ranging from 0.29 for reproductive events 
to 0.55 for metabolic events in the prediction data split 
by year, indicate that the models were less capable of 
identifying herds with high event incidence. The SVM 
performance indicates that these models may be best 
utilized in identifying characteristics common to herds 
with a low incidence of health events. Its utility in iden-
tifying herds with a high incidence of health events will 
be poor due to low model sensitivity. Poor sensitivity 
could be the result of grouping the diseases into catego-
ries. The factors that predispose a cow to one reproduc-
tive disorder—cystic ovaries, for example—may not be 
the same factors that predispose a cow to a different 
reproductive disorder; for example, metritis.

True cross-validation performance was also evalu-
ated for each SVM model; 10-fold cross-validation was 
performed and averaged across folds to compare with 
when data were split based on year. Accuracy (SD) for 
each health event category when performing true cross-
validation is included in Table 3. Figure 2 includes ROC 
curves from SVM models averaged over the 10-folds 
used for validation in each health category. Accuracy 
of prediction for SVM models improved or remained 
the same for most health categories by using true cross-
validation. The exception was the SVM model with 
RBF kernel for reproductive events. Increase in predic-
tion accuracy may be the result of using more data for 
training (approximately 90%) and repeating prediction 
multiple times. The decrease that occurs after training 
a model and using the model to evaluate a new set of 
data was less when using true cross-validation com-
pared with when data were validated based on year. 
This is likely due to the difference in data used for 
training, but it remains important to be cognizant of 
this when these models are used with real data. Based 
on these results, the best approach to estimate model 
predictive ability in this type of scenario is to perform 
random k-fold cross-validation.

Support Vector Machine—Individual Level

Models would not converge when data were split based 
on year, thus SVM model results are not included in 
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Table 4. Results from SVM models fit at the individual 
level are shown in Table 5 for both linear and RBF ker-
nels when data were split randomly. For all categories 
of health events, specificity was higher than sensitiv-
ity, regardless of kernel. This indicates that the SVM 
models can better identify healthy cows than cows with 
an incidence of disease. Similar to that reported at the 
herd level, this could be used to identify characteristics 
influencing healthy cows. Figures 3 and 4 include ROC 
curves for SVM models at the individual level.

Random Forest—Herd Level

Finally, RF models were fit to data from each health 
category to evaluate prediction of a nonparametric 
tree-based method. For each event category, an opti-
mal number of trees was determined before fitting a 
final model by testing a range of values. The optimal 
number of trees was approximately 25 for mastitis and 
reproductive events and 40 for metabolic events when 
tested across a range of values, regardless of the cross-
validation method utilized. Random forest models 
when data were split based on year did not improve 
prediction accuracy above that of models previously 
discussed. Figure 1 includes ROC curves for RF models 
fit at the herd level with year-based cross-validation 

for each health event category. For metabolic health 
events, the RF model had the highest sensitivity com-
pared with other models. In this case, the RF model 
was more capable of identifying high-risk herds for 
metabolic events. Conversely, the RF model had the 
highest specificity for mastitis and reproductive events 
when data were validated based on year.

True 10-fold cross-validation was also performed 
for each random forest model. Accuracy was averaged 
across each fold and is provided in Table 3, along with 
standard deviations. The ROC curves for 10-fold cross-
validation of RF models at the herd level are shown 
in Figure 2 for each health event category. As with 
the SVM models, accuracy of predictive performance 
improved for all health categories by using true cross-
validation. Random forest models for mastitis and re-
productive events had the best predictive performance 
based on accuracy and sensitivity. The metabolic RF 
model had the highest accuracy and sensitivity, but 
specificity was found to be lower than in SVM models.

Similarly to logistic regression, random forest models 
can provide a measure of variable importance using 
change produced in the Gini index. The Gini index is 
an alternative performance measure used for classifica-
tion trees (Breiman et al., 1984). Rather than focusing 
on accuracy of prediction, the Gini index provides a 

Table 4. Summary of random forest model performance for individual incidence of mastitis, reproductive, and metabolic health events when 
data are split by year

Health event
Accuracy 
(Training)

Sensitivity 
(Training)

Specificity 
(Training)

Accuracy 
(Validation)

Sensitivity 
(Validation)

Specificity 
(Validation)

Mastitis1 0.94 0.84 0.97 0.61 0.11 0.88
Reproductive 0.93 0.75 0.98 0.52 0.26 0.62
Metabolic 0.90 0.63 0.97 0.70 0.01 0.99
1Random forest model for each event category used 25 trees.

Table 5. Summary of model performance for individual incidence of mastitis, reproductive, and metabolic health events averaged across 10-fold 
cross-validation results fitting support vector machine (SVM) and random forest models (SD in parentheses)

Health event
Accuracy 
(Training)

Sensitivity 
(Training)

Specificity 
(Training)

Accuracy 
(Validation)

Sensitivity 
(Validation)

Specificity 
(Validation)

Mastitis
 SVM (linear) c = 0.01 0.70 (0.001) 0.24 (0.002) 0.88 (0.002) 0.70 (0.003) 0.24 (0.002) 0.88 (0.003)
 SVM (RBF) c = 10.0 0.70 (0.01) 0.39 (0.03) 0.83 (0.02) 0.70 (0.01) 0.39 (0.03) 0.83 (0.02)
 Random forest2 0.93(0.0002) 0.82 (0.001) 0.97 (0.0004) 0.93 (0.001) 0.82 (0.003) 0.97 (0.001)
Reproductive
 SVM (linear) c = 0.005 0.69 (0.001) 0.33 (0.009) 0.79 (0.003) 0.69 (0.002) 0.32 (0.01) 0.79 (0.004)
 SVM (RBF) c = 10.0 0.77 (0.01) 0.33 (0.03) 0.88 (0.02) 0.77 (0.01) 0.33 (0.03) 0.88 (0.02)
 Random forest 0.92 (0.0002) 0.73 (0.002) 0.97 (0.0002) 0.92 (0.001) 0.74 (0.006) 0.97 (0.0007)
Metabolic
 SVM (linear) c = 0.01 0.77 (0.001) 0.11 (0.02) 0.95 (0.004) 0.76 (0.03) 0.12 (0.03) 0.93 (0.05)
 SVM (RBF) c = 10.0 0.75 (0.01) 0.26 (0.01) 0.88 (0.01) 0.75 (0.01) 0.25 (0.02) 0.88 (0.01)
 Random forest 0.89 (0.0002) 0.61 (0.003) 0.97 (0.001) 0.87 (0.061) 0.57 (0.145) 0.96 (0.04)
1SVM (linear) = support vector machine with linear kernel; SVM (RBF) = support vector machine with radial basis function kernel; c = regu-
larization parameter.
2Random forest model for each event category used 25 trees.
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measure of “node purity” (Kuhn and Johnson, 2013). 
A variable that results in a high decrease in Gini index 
plays a larger role in partitioning the data. The top 
25 variables with the greatest mean decrease in Gini 
index were identified from each random forest model. 
Their importance measures are depicted graphically 
in Figures 5, 6, and 7 for mastitis, reproductive, and 
metabolic events, respectively.

Variables identified as important in the RF model 
indicate those that are influential in herd incidence of 
each respective health event category. Across all health 
event categories, environmental characteristics such 
as temperature and weather were identified. Although 
environmental conditions such as temperature and 
weather cannot be controlled, measures can be taken 
by producers to minimize the effect of these factors. For 
example, several methods have been identified to reduce 

Figure 3. Receiver operating characteristic (ROC) curves for indi-
vidual incidence of mastitis, reproductive, and metabolic health events 
when data are split by year.

Figure 4. Receiver operating characteristic (ROC) curves for indi-
vidual incidence of mastitis, reproductive, and metabolic health events 
averaged across 10-fold cross-validation results.
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the effects of heat stress (Bucklin et al., 1991). Influ-
ence of heat stress on reproductive performance has 
been identified previously by several authors (Wilson 
et al., 1998; Ravagnolo and Misztal, 2002; Caraviello 
et al., 2006). Additional key words identified in the RF 
model for mastitis included protein, mastitis, and herd 
turnover. Key words identified in the RF model for 
metabolic events at herd level included herd turnover, 

third-parity cows, and number of cows. Number of cows 
within a herd has been previously identified as a sig-
nificant risk factor in the incidence of metabolic events 
including ketosis and displaced abomasum (Stengärde 
et al., 2012). This may be indicative of an underlying 
risk factor, such as less time spent per cow in larger 
herds (Agger and Alban, 1996). Higher parity has also 
been identified as a risk factor for metabolic diseases by 

Figure 5. Variable importance plot for the 25 most important variables determined by random forest models of mastitis at the herd level. 
Importance averaged over cross-validation folds. Avg = average; MN# = previous test day in DHI-202 Herd Summary (http://www.drms.org/
PDF/materials/202Fact.pdf).

Figure 6. Variable importance plot for the 25 most important variables determined by random forest models of reproductive events at the 
herd level. Importance averaged over cross-validation folds. Avg = average; CWT = hundred-weight; VWP = voluntary waiting period.
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other authors (Rasmussen et al., 1999). The RF model 
for reproductive health events at the herd level identi-
fied PTA and third or greater parity cows most often. 
It should be noted that the key word “PTA” reflected 
several variables, including net merit of service sires 
and average net merit of cows; it does not reflect PTA 
for a particular trait. Reproductive problems are a well-
known reason why cows are removed from the herd (De 
Vries et al., 2010).

Random Forest—Individual Level

For each event category, an optimal number of trees 
was determined before fitting a final model. The opti-
mal number of trees was approximately 25 for all health 
categories when tested across a range of values, regard-
less of cross-validation technique. High accuracy was 
attained for all health events when training data with 
RF models. Receiver operating characteristic curves 
for these models with year-based cross-validation are 
included in Figure 3. Receiver operating characteristic 
curves from 10-fold cross-validation are shown in Figure 
4. When models were validated based on year, however, 
accuracy decreased drastically for prediction, with pre-
diction accuracy ranging from 0.52 to 0.70. This was 
mostly due to poor sensitivity, ranging from 0.01 for 
metabolic events to 0.26 for reproductive events. Speci-
ficity was higher for all models, indicating that these 
models were better capable of identifying healthy cows. 
Poor prediction accuracy when data are split based on 
year may indicate that risk in previous years is not 

highly correlated with risk in later years. It will be 
important to remain cognizant of this for optimization 
of data collection.

High predictive accuracy was obtained for all health 
event categories when RF models were applied to indi-
vidual data and cross-validation was performed across 
10 randomized folds. Predictive accuracy was highest 
for mastitis, at 0.93 (SD = 0.001); lowest prediction 
accuracy was for metabolic events, at 0.87 (SD = 0.061; 
Table 5). Prediction accuracy was higher when data 
were validated using 10-folds compared with valida-
tion based on year. Overall, sensitivity was lower than 
specificity; however, the sensitivity was highest for RF 
models compared with the other methods. Improved 
predictive ability can be seen from the ROC curves for 
RF models at the individual level in Figure 4.

The same procedure was conducted for RF models 
at the individual level to ascertain variable importance. 
Variable importance plots including the top 25 vari-
ables are shown in Figures 8, 9, and 10 for mastitis, 
reproductive, and metabolic events, respectively. Simi-
lar to the logistic regression models, word clouds were 
constructed with key words from variables selected in 
RF models for each health event category in the same 
manner as the stepwise regression models (see Supple-
mentary Figures S3 and S4; http://dx.doi.org/10.3168/
jds.2015-9840). The number of cows was identified for 
all health events at the individual level. As stated pre-
viously, this could be indicative of an underlying risk 
factor due to the size of herd. Herd turnover was also 
identified for all health events. This was for a range of 

Figure 7. Variable importance plot for the 25 most important variables determined by random forest models of metabolic events at the herd 
level. Importance averaged over cross-validation folds. Avg = average; MN# = previous test day in DHI-202 Herd Summary (http://www.drms.
org/PDF/materials/202Fact.pdf); PR# = month in DHI-202 Herd Summary.
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Figure 8. Variable importance plot for the 25 most important variables determined by random forest models of mastitis at the individual 
level. Importance averaged over cross-validation folds. Avg = average; MN# = previous test day in DHI-202 Herd Summary (http://www.drms.
org/PDF/materials/202Fact.pdf); PR# = month in DHI-202 Herd Summary; RYA = rolling yearly average; VWP = voluntary waiting period.

Figure 9. Variable importance plot for the 25 most important variables determined by random forest models of reproductive events at the 
individual level. Importance averaged over cross-validation folds. Avg = average; MN# = previous test day in DHI-202 Herd Summary (http://
www.drms.org/PDF/materials/202Fact.pdf); PR# = month in DHI-202 Herd Summary; VWP = voluntary waiting period.
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reasons such as being sold, reproductive problems, or 
mastitis. Additional key words identified for mastitis 
at the individual level included milk production and 
calving. Key words identified frequently for reproduc-
tive events also included milk production and calvings. 
Additional key words identified for metabolic events 
included fat production, first parity, and milk produc-
tion.

General Discussion

For all models investigated herein, overall accuracy 
of prediction improved when fitting the model at the 
individual level compared with at the herd level. This 
may be the result of additional processing applied to 
herd-level data (converting actual incidence to a binary 
indicator). An alternative to converting the herd-level 
data to binary data would be to fit regression models. 
This was not done, however, because the goal was not 
to predict herd incidence numerically.

Each of the models investigated has benefits and 
disadvantages aside from their ability to predict health 
status. Logistic regression cannot easily handle missing 
values, thus the need for imputing missing values before 
analysis. Logistic regression also tends to be much more 
time consuming, even when the number of variables 
being incorporated is decreased before model fitting. 
Logistic regression is more easily understood than non-
parametric models and it is able to identify influential 
variables. Support vector machines are a much more 

flexible class of models compared with logistic regres-
sion. Several different kernels can be used when fitting 
an SVM model. These models do require estimation of 
tuning parameters, such as penalty or cost. Results can 
be more difficult to interpret than in logistic regres-
sion models as well. Support vector machine models 
also cannot easily handle missing values, aside from 
imputation or ignoring missing records. Unlike logistic 
regression, however, SVM models were able to accept 
all variables within the data set without having to first 
perform some sort of feature selection. The most flex-
ible models investigated herein were RF models. These 
models were able to easily handle missing variables, as 
well as handle a large number of variables. Random for-
est models can also identify influential variables. One 
disadvantage of RF models is that they can be more 
difficult to interpret than a single decision tree, but 
tend to have better predictive performance, as they are 
the result of averaging over many decision trees. As 
observed from measurements of predictive ability, RF 
models performed the best overall.

Predictive ability of models investigated herein also 
depended upon the cross-validation method. In general, 
true 10-fold cross-validation results resulted in less of 
a decline in predictive ability when applied to valida-
tion data. As previously mentioned, this may be the 
result of training on more data (90 vs. 75%) multiple 
times when performing true 10-fold cross-validation. 
However, several scenarios were tested using data split 
based on year with a ratio of 90% training and 10% 

Figure 10. Variable importance plot for the 25 most important variables determined by random forest models of metabolic events at the 
individual level. Importance averaged over cross-validation folds. Avg = average; MN# = previous test day in DHI-202 Herd Summary (http://
www.drms.org/PDF/materials/202Fact.pdf); PR# = month in DHI-202 Herd Summary.
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validation. No significant difference in performance was 
found. This may indicate that the risk in previous years 
is lowly correlated with risk in later years. There could 
also be an unrelated trend occurring over time that 
true cross-validation was able to break down but split-
ting based on year was not. These models seem to have 
difficulty predicting a trend in data versus predicting 
the current scenario. Models developed specifically for 
identifying changing trends may prove advantageous 
in this case and are an area for future research (e.g., 
Nikolov, 2012). Another alternative approach would be 
to use herds with proven high-quality data to train the 
models. Regardless, we expect that as more data are 
collected and incorporated, differences between cross-
validation methods will be minimized.

An interesting “side effect” of logistic regression and 
RF models is the ability to identify the variables affect-
ing the trait of interest. It is important to note, how-
ever, that speculating on the significance of different 
variables, albeit interesting, is complicated by the fact 
that some of these associations may be transient and 
not causative. With that said, logistic regression and 
RF models identified several of the same key factors for 
each health event category. This lends further support 
to the importance of these factors for their respective 
health event. Mastitis models identified herd turnover 
as a key factor. Common factors for metabolic events 
included leaving the herd and production. Reproduc-
tive models identified production and days open as 
being associated with incidence of reproductive health 
events. A relationship between reproductive health 
events and (increased) days open has been identified by 
other researchers (e.g., Cobo-Abreu et al., 1979; Lee et 
al., 1989; Fourichon et al., 2000). Future research using 
longitudinal models should allow for a better under-
standing of the effect of individual variables. Produc-
ers could use the variables identified as influential in 
determining health status to more closely monitor the 
herd if they have specific health concerns. Consultants 
could also use the identified variables to enhance their 
advice and suggestions given to producers based on 
field experience and knowledge.

Ultimately, routinely recorded herd data could be 
incorporated into herd management strategies to alert 
producers to potential problems. This research sug-
gests that benchmarking of herd health is feasible with 
routinely collected data; however, further research is 
needed. As previously mentioned, models developed to 
identify and predict trends may have improved perfor-
mance when dealing with dynamic data such as these. 
Time-series classification models have been successfully 
applied to predict “trending” topics on social media 
sites (Nikolov, 2012). Improvement in predictive abil-
ity may also be possible by modeling individual health 

events as opposed to grouping events into categories. 
The factors that predispose a cow to retained placenta, 
for example, may not be the same as the factors that 
increase a cow’s risk of cystic ovaries. An alternative to 
the approach taken here would be to select certain well-
recorded and economically important health events to 
be monitored for unfavorable changes. Further develop-
ment and incorporation of predictive models into herd 
management routines will further improve dairy herd 
health.

CONCLUSIONS

Results of these analyses indicate that machine learn-
ing algorithms, specifically random forest, can be used 
to accurately identify herds and cows likely to experi-
ence a health event of interest. Random forest models 
had higher predictive ability than parametric models 
typically used to identify characteristics affecting health 
status. Random forest models also outperformed sup-
port vector machine models. Influential variables were 
identified for each health event with logistic regression 
and random forest models. Among identified variables, 
herd turnover, milk production, parity, and weather 
conditions were selected, regardless of health event cat-
egory. Based on these data, our results provide evidence 
for the feasibility of utilizing routinely recorded herd 
data to predict herd health status.
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