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ABSTRACT

This study compares how different cow genotyping 
strategies increase the accuracy of genomic estimated 
breeding values (EBV) in dairy cattle breeds with low 
numbers. In these breeds, few sires have progeny re-
cords, and genotyping cows can improve the accuracy 
of genomic EBV. The Guernsey breed is a small dairy 
cattle breed with approximately 14,000 recorded indi-
viduals worldwide. Predictions of phenotypes of milk 
yield, fat yield, protein yield, and calving interval were 
made for Guernsey cows from England and Guernsey 
Island using genomic EBV, with training sets including 
197 de-regressed proofs of genotyped bulls, with cows 
selected from among 1,440 genotyped cows using dif-
ferent genotyping strategies. Accuracies of predictions 
were tested using 10-fold cross-validation among the 
cows. Genomic EBV were predicted using 4 different 
methods: (1) pedigree BLUP, (2) genomic BLUP using 
only bulls, (3) univariate genomic BLUP using bulls 
and cows, and (4) bivariate genomic BLUP. Genotyp-
ing cows with phenotypes and using their data for the 
prediction of single nucleotide polymorphism effects 
increased the correlation between genomic EBV and 
phenotypes compared with using only bulls by 0.163 
± 0.022 for milk yield, 0.111 ± 0.021 for fat yield, and 
0.113 ± 0.018 for protein yield; a decrease of 0.014 ± 
0.010 for calving interval from a low base was the only 
exception. Genetic correlation between phenotypes 
from bulls and cows were approximately 0.6 for all yield 
traits and significantly different from 1. Only a very 
small change occurred in correlation between genomic 
EBV and phenotypes when using the bivariate model. 

It was always better to genotype all the cows, but when 
only half of the cows were genotyped, a divergent selec-
tion strategy was better compared with the random or 
directional selection approach. Divergent selection of 
30% of the cows remained superior for the yield traits 
in 8 of 10 folds.
Key words: genomic selection, genotyping cows, cow 
genotyping strategies, Guernsey

INTRODUCTION

Response to selection can be increased by changing 
the ratio of the accuracy of EBV to the generation 
interval, and an intermediate age exists where this ratio 
is maximized, thus defining the optimum selection age. 
For conventional evaluations based solely on pedigree 
and phenotypes, the accuracy of parent average EBV is 
too low, precluding the intense selection of young bulls 
at birth. For this purpose, bulls for widespread use are 
often selected only after the phenotypes of their first 
crop daughters are known, at around 5 yr of age. A 
benefit of genomic selection is its potential to increase 
the accuracy of EBV early in life. To achieve this, a 
sufficient number of individuals with phenotypes or 
progeny records needs to be genotyped (Meuwissen et 
al., 2001). Based on this training set of individuals, 
SNP effects are then estimated. These estimates can 
then be used for the calculation of genomic EBV of 
genotyped individuals without phenotypic observations 
on themselves, or lactating daughters in the case of 
young bulls. When the accuracy of a genomic EBV is 
high enough, the optimum selection age for the parents 
of a future generation can be lowered, reducing the 
generation interval. This might result in a doubling of 
the rate of genetic gain in dairy schemes compared with 
conventional breeding values (Schaeffer, 2006).

The accuracy of a genomic EBV will be higher when 
the number of genotyped individuals with own perfor-
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mance or progeny records is large (Daetwyler et al., 
2008, 2010; Goddard, 2009). In large populations, many 
sires have achieved very accurate progeny tests from 
large daughter groups, and have been genotyped. This 
has enabled the successful implementation of genomic 
selection in large populations of dairy cattle (VanRaden 
et al., 2009). However, for small cattle breeds genomic 
selection is still a challenge as their limited resources 
restrict the prediction accuracy, as either the number of 
sires with a large number of daughters is too small, or 
the progeny tests are weak. Three solutions are possible 
to overcome this problem. One is to include genotypes 
from the same breed but from the other country (Cooper 
et al., 2016), another is to combine the breed-specific 
reference population with other breeds (Hayes et al., 
2009; Olson et al., 2012; Hozé et al., 2014), and the last 
is to include cows in the reference population (Pryce et 
al., 2012; Calus et al., 2013; Cooper at al., 2015).

The success of combining the reference population 
with another breed depends on the genetic distance 
between them, numbers of genotyped individuals, and 
SNP chip density. Genomic evaluation requires that 
the different populations are at least distantly related 
(Habier et al., 2010). To increase genetic gain, the refer-
ence population and selection candidates should share 
recent ancestors (Clark et al., 2012; Pszczola et al., 
2012). This relationship is higher when genotypes from 
cows of the same breed are available compared with 
individuals from different breeds, but their accuracy 
is often smaller compared with de-regressed proofs of 
bulls from large breeds, and are typically expected to 
add less information per genotyped individual, although 
this difference depends on the heritability. de Roos 
(2011) estimated that the addition of 7 cows for a trait 
with a heritability of 0.1 gives the same gain as adding 
1 bull with 100 tested progeny, whereas for the trait 
with a heritability of 0.5 this ratio decreased to 2 cows 
per bull. Simulations performed by Jiménez-Montero 
et al. (2012) showed that not only the number of cow 
genotypes but also the genotyping design can increase 
the accuracy of genomic EBV. The accuracy of diver-
gent selection on yield or breeding value deviations was 
higher than when selecting at random or based on the 
extreme values in the upper tail.

The goal of this study was to estimate the benefit of 
using cow genotypes for genomic selection in a small 
dairy cattle population. An additional goal was to 
determine the effect of different cow genotyping strate-
gies on the accuracy of selection. The Guernsey breed 
represented by bull and cow genotypes from England 
and Guernsey Island is a suitable population for this 
study. Guernsey is one of the smaller dairy breeds with 
approximately 14,000 recorded individuals worldwide, 
and of these, 2,000 are on Guernsey Island.

MATERIALS AND METHODS

Study Samples

A total of 1,637 genotypes from Guernsey cattle were 
available: 197 from bulls and 1,440 from cows. Of the 
bull samples, 29 were genotyped with the Illumina Bo-
vineHD Genotyping BeadChip (777K; Illumina Inc., 
San Diego, CA) and 168 with the GeneSeek Genomic 
Profiler HD BeadChip Version 1 (75K; Neogen Corp., 
Lexington, KY). All of the cow samples were genotyped 
with the GeneSeek Genomic Profiler for Dairy Cattle 
Version 3 (25K; Neogen Corp.).

Genotyped bulls were part of the AI program and 
were born between 1957 and 2013. Except for the most 
recent ones, they had daughters with records available 
and were included in genetic evaluations. One bull 
had both parents genotyped and 75 bulls had one par-
ent genotyped. Cows with genotypes were a cohort of 
Guernsey cows present on the island in early 2014. They 
were born between 1997 and 2013 and were included in 
the milk recording scheme. One hundred thirty-three 
cows had both parents genotyped, and 705 cows had 
one parent genotyped.

Genotype Quality Check

Before the genotypes were checked for quality, 3 in-
dividuals were discovered to have been repeated, and 
the sample with the higher call rate was kept. For all 
3 chips, SNP were checked for the position and name: 
199 SNP had the same name but different positions, 
or had different names but with the same position as 
another and these were excluded. The SNP on the sex 
chromosomes were excluded from all the chips. Indi-
viduals were excluded when overall call rate was <0.85 
or heterozygosity was outside the interval of mean ± 3 
SD calculated for the relevant SNP chip. Altogether, 
107 samples from the 25K chip, 1 from the 75K chip, 
and 1 from the 777K chip failed these criteria as shown 
in Appendix A Figures A1, A2, and A3. Then, SNP loci 
were excluded if call rate <0.85: 546 were excluded for 
the 25K chip, 1,327 for the 75K chip, and 12,712 for the 
777K chip. For imputation, individuals genotyped with 
777K were merged with 75K using only 72,679 SNP 
from the 75K chip. Finally, SNP with Hardy-Weinberg 
equilibrium test P < 10−6 or minor allele frequency 
(MAF) <0.05 were removed, resulting in the availabil-
ity of 64,657 and 17,716 SNP on the 75K and 25K chip, 
respectively.

The pedigree relationship was checked separately 
for duos and trios using PLINK (Purcell et al., 2007) 
by comparing the known genotypes of parents and 
offspring. Parent-offspring duos with more than 1% of 
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opposing homozygosity were identified, and 1 case was 
discovered and the relationship was set to unrelated. 
For trios the percentage of opposing homozygous and 
heterozygous genotypes in the offspring for SNP where 
both of the parents were homozygous for the same allele 
was calculated, and if more than 1% were inconsistent, 
both parent-offspring relationships were set as missing, 
which occurred in 2 cases. For all the other instances, 
genotype inconsistencies between parents and progeny 
were corrected using conflict.f90, which corrects for 
Mendelian errors and fills missing SNP using parental 
genotypes where possible (VanRaden et al., 2015).

Genotype Imputation

A 2-step imputation process (Figure 1) was conduct-
ed using the pedigree and FImpute (Sargolzaei et al., 
2014). In the first step, SNP existing only on the 25K 
chip (5,733 SNP) were excluded and individuals with 
genotypes on the 25K chip were imputed to the SNP 
existing on the 75K chip (64,657 SNP). After the first 
step, MAF was reviewed and SNP with MAF <0.05 
were excluded. Then SNP excluded from the first step 
were re-introduced giving a total of 69,034 SNP avail-
able for the second imputation step, where loci only on 
the 25K chip were imputed for individuals genotyped 
only on the 75K chip. After the second step, MAF for 
all SNP was >0.05.

Imputation accuracy and efficiency were tested on 
1,333 cow genotypes with 11,983 SNP existing on both 
75K and 25K chips using 10-fold cross-validation. For 
each fold, 10% of SNP selected at random were set as 

missing and imputed so that each SNP was imputed 
exactly once. All of the 1,333 cow genotypes were used 
in each of the 10 folds. The imputation efficiency and 
accuracy were calculated as the correlation, genotype 
concordance, and allele concordance between the im-
puted and the true genotypes.

Traits for Analysis

The benefits of genotyping cows and different geno-
typing strategies were analyzed for 4 traits: milk yield 
(kg), fat yield (kg), protein yield (kg), and calving 
interval (d). Two types of data were obtained: official 
PTA for bulls and cows and daily milk records for cows. 
Profitable lifetime index (PLI) and Guernsey merit 
index (GMI) were also obtained for bulls and cows for 
the purpose of creating different selection subsets. The 
main difference between PLI and GMI is the emphasis 
put on production and functional traits. Whereas PLI 
has about 32% weights on production traits and 68% 
on fitness traits, GMI has 60% of weights on production 
traits and 30% on functional traits. The PTA, PLI, 
and GMI were obtained from the Interbull evaluation 
with multiple, across-country data carried out in April 
2015. All the data were obtained from EGENES, which 
provides genetic evaluations for UK dairy cattle on be-
half of the Agricultural and Horticultural Development 
Board.

Daily milk records from the first 5 lactations were 
obtained for milk, fat, and protein yield. They were 
transformed into standard 305-d lactation records 
using the test interval method (Sargent et al., 1968). 

Figure 1. The 2-step process used for imputation of individuals up to the 75K chip, which was necessitated by a subset of the SNP loci ap-
pearing only on the 25K chip.
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Because dry-off days were not available, they were ap-
proximated: lactation length was set to 305 d when 
the last milk recording was done 31 d or less before 
the 305 d of lactation; in all the other cases 31 d were 
added to the last milk recording to get the dry-off day. 
Lactations shorter than 201 d were discarded. Lacta-
tion yield records were corrected for the fixed effects 
of calving year-season, lactation number, and herd. 
Calving interval records were available for the first 
lactation only. They were corrected for the fixed effects 
of calving year-season and herd. Finally, adjusted phe-
notypes from cows combined with de-regressed proofs 
from bulls (see below) were used for the estimation 
of genomic and conventional breeding values. These 
values will be called phenotypes. This process resulted 
in double counting of data from cows that also were 
daughters of bulls included. After matching genotypes 
with phenotypes 1,492 individuals (185 bulls and 1,307 
cows) remained for yield traits, 1,149 individuals (157 
bulls and 992 cows) remained for calving interval, and 
1,403 individuals (157 bulls and 1,246 cows) had PLI 
and GMI indexes available. For bull PTA, 2.3% of 
the 28,709 daughters contributing records were found 
among the genotyped cows, and in the distribution of 
genotyped cows to daughter contributions among the 
185 bulls the median was 0 and the upper quartile was 
3%.

The PTA were multiplied by 2 to get EBV and de-
regressed using the approach described by Garrick et 
al. (2009). Weights were calculated to allow for the 
unequal error variances of the de-regressed EBV; for 
each individual i, the weight wi was calculated as

 w h c r r hi i i= −( ) + −( )⎡
⎣⎢

⎤
⎦⎥{ }1 12 2 2 2/ / , 

where c is the genetic variance not assigned to SNP 
effects and was defined to be 0.2 following the estimate 
of Daetwyler (2009) for the 50K Illumina SNP chip, h2 
is the trait heritability, and ri

2 is the reliability of the 
de-regressed EBV. The value of c was assumed to be 
the same for all traits. Heritabilities assumed were 0.55 
for milk yield, 0.47 for fat yield, 0.51 for protein yield, 
and 0.033 for calving interval, which are those used for 
UK evaluations. Weights for repeated lactation milk 
records of cows were calculated as

 w h ch n t n hi = −( ) + + −( )⎡
⎣⎢

⎤
⎦⎥{ }−( )1 1 12 2 2/ / , 

where n is the number of lactations and t is the repeat-
ability used for UK evaluations (0.82, 0.84, and 0.79 for 
milk, fat, and protein yield, respectively). The mean wi 
for cows were 0.97 (SD 0.11) for milk yield, 0.98 (SD 

0.09) for fat yield, and 1.01 (SD 0.12) for protein yield. 
Because calving interval was only available for the first 
lactation, wi = 0.99 for all the cows. The weights for 
bulls were greater: 2.93 (SD 0.74) for milk yield, 4.03 
(SD 1.02) for fat yield, 3.44 (SD 0.87) for protein yield, 
and 44.2 (SD 22.16) for calving interval.

Prediction of Breeding Values

Two univariate models and one bivariate model were 
used to calculate EBV using ASReml software (Gilm-
our et al., 2009). The 2 univariate models differed in 
the relationship matrix used. One used Wright’s Nu-
merator Relationship Matrix (A), and the other used a 
genomic (G) relationship matrix. The univariate model 
can be expressed as

 y Zu e= + +1μ , 

where y is a vector of phenotypes, μ is the overall mean, 
Z is the incidence matrix linking the records from vec-
tor y to vector u, u is a vector of random genetic effects 
of the animals, and e is the vector of errors distributed 
as N e( , )0 2 1σ W−  with W−1 the diagonal matrix. The di-
agonal matrix W contains the weights wi for each indi-
vidual as described above.

Depending on the model, the variance of u was 
Var u A( ) = σa

2 , where σa
2 is additive genetic variance, or 

it was Var u G( ) = σg
2, where σg

2 is genetic variance as-
sociated with G. Matrix A was calculated using the 
known pedigree, and matrix G using the whole genome 
SNP data following VanRaden (2008):

 G
MM

=
−( )
'

,
2 1j

Nsnp
j jp pΣ

 

where M is a matrix of genotypes with elements Mij 
denoting the number of the counted allele for animal i 
at SNP j and expressed as the deviation from the SNP 
mean allele frequency of 2pj, and Nsnp is the number 
of SNP.

To examine if the correlation between the EBV ob-
tained from bulls’ or cows’ genotypes was different from 
one, the following bivariate model was used:
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where y1 is a vector of bull phenotypes with cow phe-
notypes set as missing, y2 is a vector of cow phenotypes 
with bull phenotypes set as missing, μ1 and μ2 are the 
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overall mean values for bulls and cows, Z1 and Z2 are 
equal incidence matrices linking the records from vec-
tors y1 and y2 to vectors u1 and u2, u1 and u2 are 
vectors of random genetic effects of the animals, and e1 
and e2 are the vector of errors.

The following (co)variance structure for random ge-
netic effects is assumed:
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where σg1
2  and σg2

2  are genetic variances explained with 
SNP effects estimates from bulls or cows; σg12 = σg21 is 
the genetic covariance between SNP effects estimates; 
σe1
2  and σe2

2  are the residual variances.

Scenarios for Creating Reference Population

In total, 10 scenarios were compared using 10-fold 
cross-validation, with all scenarios tested on each vali-
dation set. In each fold, 90% of cow records were avail-
able for estimating the SNP effects, and the remaining 
10% of records used for validation and set to missing. 
Bulls were always included, as the central question was 
how to supplement the bull data with routine cow ge-
notyping. Validation sets were created at random by 
sampling without replacement, so each cow appeared 
in only one validation set. The weighted correlation 
between the genomic EBV and phenotypes for the cows 
in the validation set was calculated within each fold 
with weights calculated as wi = 1/[t + (1−t)/n], where 

t is the repeatability. Means and approximate standard 
errors were calculated from the standard deviations 
across the cross-validation folds of estimates made 
within folds. An approximate one-tailed sign test was 
used in some comparisons to assess the significance of 
the difference in correlation between 2 scenarios. An 
observed improvement was judged as significant when 
the correlation was greater in at least 8 out of 10 folds, 
which has a Type 1 error of 5.5% when compared with 
binomial(10,0.5).

The 10 scenarios differed in the simulation of cow 
selective genotyping (Table 1). Within each fold of 
10-fold cross-validation test selective genotyping was 
performed only on the cows for which records were 
available for estimating the SNP effects. When the cow 
was not selected to be genotyped, her phenotype was 
set to missing so this cow did not contribute to the SNP 
effect estimates. In scenario 1 no cows were genotyped, 
whereas in all the other scenarios different proportions 
of cows were genotyped. Cows contributing genotypes 
were selected in 4 ways: (I) all cows, (II) a random 
sample of half of the cows, (III) cows with extreme 
phenotypes, and (IV) cows with extreme values in ei-
ther tail. Selection of cows with extreme phenotypes 
was based on the (I) percentage of cows selected for 
genotyping (50, 40, or 30%) and (II) the trait used for 
selection of cows to be genotyped. The traits used for 
selection of cows to be genotyped were (I) the trait for 
which EBV was calculated, (II) milk yield, (III) PLI, 
or (IV) GMI.

Quantitative Modeling of Genotyping Strategies

To validate and generalize the results of the cross-
validation outcomes for genotyping strategy, the quan-
titative models of Daetwyler et al. (2008, 2010) were 

Table 1. Strategies for cow selective genotyping with the number of cows in the reference population1

Scenario  Selection strategy for cows
Cows 

genotyped2 (%)

Number of cows 
in the reference population

Yield traits Calving interval

1 None 0 0 0
2 None 100 1,176 893
3 Random 50 588 446
4 Extreme values in upper tail within each trait 50 588 446
5 Extreme values in either tail within each trait 50 588 446
6 Extreme values in either tail within each trait 40 470 357
7 Extreme values in either tail within each trait 30 392 268
8 Extreme values from either tail for corrected milk yield 50 588 446
9 Extreme values from either tail for PLI3 50 588 446
10 Extreme values from either tail for GMI3 50 588 446
1For divergent selection using either tail, selection is assumed to be equally divided between the tails.
2From all the cows, 10% were used for the purpose of validation and the rest were available for estimating the SNP effects.
3PLI = profitable lifetime index; GMI = Guernsey merit index.
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extended to cover the range of scenarios considered 
here. This development is described in detail in Appen-
dix B. The predictions obtained were compared with 
the cross-validation outcomes for the production traits.

RESULTS

Imputation Accuracy

The correlation between the true and imputed geno-
types was 0.952 between individuals and 0.945 between 
SNP (Table 2). Genotype concordance was 0.961 and 
allele concordance was 0.980. The concordances were 
greater than correlations and were the same between 
individuals or between SNP.

Genotyping Cows

Genotyping cows with phenotypes (scenario 2) and 
using their data for the prediction of SNP effects in-
creased the correlation between phenotypes and ge-
nomic EBV (Table 3) compared with using a training 
set consisting of the genotyped bulls alone (scenario 
1). Benefits were observed across all folds for all yield 
traits. For milk yield, when using univariate genomic 
BLUP (GBLUP), the correlation increased by 0.163 
± 0.022 to 0.376 ± 0.019 and was the highest among 
all the traits. For fat yield the correlation increased by 
0.111 ± 0.021 to 0.347 ± 0.025, and for protein yield 
by 0.113 ± 0.018 to 0.323 ± 0.027. Calving interval was 
the exception in which the correlation did not increase; 
it decreased from the low base of GBLUP (0.057 ± 

0.029) by 0.014 ± 0.010 to 0.042 ± 0.031. Negative 
correlations with phenotypic calving interval were ob-
served for 3 out of 10 folds for bulls alone, and 2 out of 
10 after adding the cows.

The training set of bulls and cows with genomic data 
using GBLUP improved the accuracy of prediction 
compared with classical BLUP. The increases in the 
correlation between GBLUP and BLUP approaches 
were by 0.060 ± 0.015 for milk, 0.036 ± 0.019 for fat, 
0.033 ± 0.015 for protein, and 0.024 ± 0.024 for calv-
ing interval. For the yield traits, the addition of the 
cow data to the training set spanned the tipping point 
so that the bulls’ genomic data alone provided less 
accurate predictions than BLUP, whereas with cows 
genomic data predictions were more accurate.

The genetic correlation between the phenotypes from 
bulls and cows in the bivariate model was less than 1 (P 
< 0.05) for all traits except for calving interval where 
it was not estimable. For milk, fat, and protein yields 
the estimates were 0.600 (±0.142), 0.606 (±0.130), and 
0.628 (±0.144), respectively, whereas for calving inter-
val convergence was lacking. When the bivariate model 
was used, the correlation between phenotype and ge-
nomic EBV for milk yield did not change compared 
with the univariate model with bulls and cows, and 
changed only marginally for fat and protein yield.

Cow Genotyping Strategies

Selecting a subset of cows for genotyping decreased 
the correlation between the phenotypes and genomic 
EBV for yield traits as might be expected (see Table 4; 

Table 2. Correlation, genotype, and allele concordance between true and imputed genotypes over 10-fold 
cross-validations

Item

Between individuals

 

Between SNP

Mean SD Mean SD

Correlation 0.952 0.033  0.945 0.072
Genotype concordance 0.961 0.024  0.961 0.044
Allele concordance 0.980 0.012  0.980 0.024

Table 3. The correlation between genomic estimated breeding values and phenotypes using different methods of prediction1

Trait

Method

GBLUP 
(bulls)

GBLUP 
(bulls + cows) Bivariate GBLUP

BLUP 
(bulls + cows)

Milk yield 0.213 (0.030) 0.376 (0.019) 0.376 (0.020) 0.316 (0.025)
Fat yield 0.236 (0.020) 0.347 (0.025) 0.349 (0.024) 0.310 (0.034)
Protein yield 0.210 (0.026) 0.323 (0.027) 0.327 (0.029) 0.291 (0.032)
Calving interval 0.057 (0.029) 0.042 (0.031) NA2 0.018 (0.044)
1SE are given in parentheses based on the outcomes from the 10 validation sets. GBLUP = genomic BLUP.
2Convergence was not achieved.
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scenarios 2 cf. 3). The largest decrease when genotyp-
ing only half of the cows selected at random was for 
milk yield where the correlation dropped from 0.376 by 
0.055 ± 0.014 when using univariate GBLUP. For fat 
yield and protein yield, these decreases were smaller 
but notable, 0.033 ± 0.012 and 0.036 ± 0.012. Given 
the low predictive accuracy obtained for calving inter-
val and the scale of variation in validation sets, the 
detailed results for this trait are not discussed although 
the results are shown in Table 4.

The genotyping strategy was important when using a 
subset of individuals for training. Genotyping only the 
50% of individuals which were in extreme within either 
tail of phenotypes increased the correlation between the 
phenotypes and genomic EBV and restored much of the 
loss in accuracy from genotyping only 50% the cows at 
random (Table 4; scenarios 5 cf. 3) with increases in 
accuracy of 0.048 ± 0.016, 0.026 ± 0.010, and 0.035 
± 0.012 for milk, fat, and protein yields, respectively. 
The greater accuracy from the divergent selection was 
observed in at least 8 out of 10 folds for all 3 yield 
traits. In contrast, genotyping only the 50% of pheno-
types in upper tail decreased the correlation between 
the phenotypes and genomic EBV below that obtained 
from randomly selecting 50% for all yield traits (Table 
4; scenarios 4 cf. 3) by 0.037 ± 0.016, 0.050 ± 0.013, 
and 0.041 ± 0.016.

Reducing the percentage of genotyped cows with ex-
treme phenotypes below 50% decreased the correlation 

between phenotypes and genomic EBV, but even when 
only 30% of cows were genotyped and selected from 
the extremes (scenario 7), the correlations for milk, fat, 
and protein yield were still higher than in scenario 3 
where 50% of phenotypes were genotyped at random. 
These benefits were observed for at least 8 out of the 
10 folds for all yield traits. Averaged over the 3 yield 
traits, divergent selection of 30, 40, and 50% of the 
cows restored 56, 72, and 88% of the loss from selecting 
50% of cows at random, compared with genotyping all 
the available cows.

To increase the correlation between the genomic EBV 
and phenotypes, different criteria were used for select-
ing cows to be genotyped (Table 5). Results were in-
consistent across trait. For fat yield, correlation was the 
highest when genotyping was done based on GMI ranks 
(scenario 10), for milk and protein yield when selection 
was based on milk yield (scenario 8), and for calving 
interval when ranking was based on PLI (scenario 9). 
When PLI or GMI were used as the selection crite-
rion, correlations were always greater than in scenarios 
where cows were selected at random. The correlations 
between PLI and yield traits were 0.27 for milk yield, 
0.39 for fat, and 0.36 for protein yield. Between GMI 
and yield traits they were 0.29 for milk yield, 0.46 for 
fat yield, and 0.42 for protein yield. For calving interval 
the correlation with both PLI and GMI was negative 
(–0.13 and –0.16, respectively), which is expected as 
long calving interval is not desired.

Table 4. The correlation between genomic estimated breeding values and phenotypes from different scenarios of selecting cows for genotyping 
using the univariate genomic BLUP (GBLUP) method1

Trait

Scenario

2 3 4 5 6 7

Milk yield 0.376 (0.019) 0.322 (0.021) 0.284 (0.029) 0.369 (0.022) 0.364 (0.021) 0.353 (0.022)
Fat yield 0.347 (0.025) 0.314 (0.021) 0.264 (0.020) 0.340 (0.025) 0.333 (0.024) 0.327 (0.024)
Protein yield 0.323 (0.027) 0.287 (0.023) 0.246 (0.026) 0.322 (0.027) 0.316 (0.027) 0.313 (0.028)
Calving interval 0.042 (0.031) 0.043 (0.032) 0.049 (0.027) 0.040 (0.031) 0.046 (0.030) 0.042 (0.031)
1SE are given in parentheses based on the outcomes from the 10 validation sets. Scenarios: 2: all cows; 3: 50% selected at random; 4: 50% from 
upper tail; 5: 50% from either tail; 6: 40% from either tail; 7: 30% from either tail.

Table 5. Correlation between genomic estimated breeding values and phenotypes with different criterion for divergent selection of 50% of cows 
for genotyping using the univariate genomic BLUP (GBLUP) method1

Trait

Scenario

3 5 8 9 10

Milk yield 0.322 (0.021) 0.369 (0.022) 0.369 (0.022) 0.338 (0.028) 0.354 (0.015)
Fat yield 0.314 (0.021) 0.340 (0.025) 0.336 (0.026) 0.328 (0.022) 0.342 (0.013)
Protein yield 0.287 (0.023) 0.322 (0.027) 0.331 (0.016) 0.316 (0.028) 0.326 (0.014)
Calving interval 0.043 (0.032) 0.040 (0.031) 0.051 (0.026) 0.055 (0.032) 0.045 (0.045)
1SE are given in parentheses based on the outcomes from the 10 validation sets. Scenarios: 3: at random; 5: from either tail for the same trait 
as the genomic EBV; 8: from either tail for milk yield; 9: from either tail for profitable lifetime index (PLI); 10: from either tail for Guernsey 
merit index (GMI).
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Bias

Table 6 shows the slopes of the regressions of phe-
notypes on genomic EBV for a range of scenarios, 
where unbiasedness is indicated by a slope of 1, with 
under- and overestimation indicated by slopes >1 and 
<1, respectively. Only occasional evidence is available 
for underestimation of differences in breeding values: 
using bulls only for the training set (scenario 1) when 
predicting fat yield, and using the 50% of cows from the 
upper tail (scenario 4) when predicting protein yield. 
However, an overview of Table 6 suggests that random 
selection of cows were less likely to be biased with selec-
tion strategies involving only the tails having a trend 
toward overestimation. This was examined by compar-
ing regression slopes within cross-validation folds for 
scenarios 3, 4, and 5 where 50% of cows were selected 
either randomly, from the upper tail only, or from both 
tails, respectively. Reductions in slope of 0.175 ± 0.052, 
0.077 ± 0.034, and 0.091 ± 0.032 for milk, fat, and 
protein yield, respectively, were observed when 50% 
of cows from both tails were selected compared with 
random selection (cf. scenarios 5 and 3). Selection from 
the upper tail alone increased the trend toward over-
estimation, particularly for fat and protein yield, by 
with further reductions in slope of 0.052 ± 0.057, 0.209 
± 0.041, and 0.189 ± 0.039 for the same 3 traits (cf. 
scenarios 4 and 5). Note that uncertainty in whether or 
not predictions for scenario 3 are themselves unbiased 
preclude stating that scenarios 4 and 5 overestimate 
true differences in breeding values. Regression slopes 
for calving intervals varied widely.

Predicting Benefits of Genotyping Strategies

Figure 2 shows the relationship between rp
−2, the 

square of the reciprocal of the values shown in Table 4 
and nδ( )−1 , where n is the number of records in the 
training set and δ is the fractional change in genetic 
variance arising from selection (see Appendix B). The 
expectation is that the relationship is linear and this 

was broadly observed. Some biases are evident with the 
points representing scenarios with selection tending to 
be less than predicted from the regression, and factors 
contributing to the deviations are discussed below. The 
model correctly predicts that scenarios 5, 6, and 7 using 
divergent selection for milk yield, fat yield, and protein 
yield will be more accurate than scenario 3 with ran-
dom selection of 50%. The threshold for the equivalence 
of divergent selection to random selection of 50% de-
pends on the heritability, but for all yield traits the 
model predicted thresholds between 20 and 30%, with 
traits of higher heritability having thresholds associated 
with greater intensity.

DISCUSSION

Fewer than 200 progeny-tested Guernsey bulls with 
genotypes were available from The Royal Guernsey 
Agricultural & Horticultural Society and The English 
Guernsey Cattle Society for use as a training set for 
initiating genomic evaluations. The results showed that 
these alone had weaker predictive power than the use of 
BLUP and in this population led to biased estimates of 
breeding values. Whereas genomic information can be 
combined with the information from pedigree (Legarra 
et al., 2009; Meuwissen et al., 2011), obtaining sub-
stantial increases in accuracy, especially for functional 
traits such as calving interval, will come from increasing 
the training set size. However, the number of progeny 
tested bulls per year in the Guernsey is small and their 
number is not expected to increase significantly in the 
near future. Three solutions are possible to increase the 
accuracy of breeding values obtained: (1) to include 
genotypes of proven bulls from another cattle breed, 
which to date has met with limited success (Hayes et 
al., 2009; Olson et al., 2012; Hozé et al., 2014); (2) 
to include genotypes from the same breed but from 
another country (Cooper et al., 2016), or (3) as tested 
here, to include genotypes from cows with their own 
records (Pryce et al., 2012; Calus et al., 2013). The 
results showed that supplementing the training set with 

Table 6. Bias expressed as slope of the regression of phenotypes on genomic EBV from different scenarios of selecting cows for genotyping using 
the univariate genomic BLUP (GBLUP) method1

Trait

Scenario

1 2 3 4 5

Milk yield 0.829 (0.124) 1.081 (0.076) 1.065 (0.099) 0.838 (0.106) 0.890 (0.066)
Fat yield 0.774 (0.066) 1.023 (0.083) 1.011 (0.073) 0.726 (0.063) 0.935 (0.077)
Protein yield 0.840 (0.102) 1.018 (0.102) 1.006 (0.101) 0.726 (0.089) 0.915 (0.088)
Calving interval 1.539 (0.802) 2.300 (1.541) 2.056 (1.556) 2.095 (1.217) 3.390 (2.544)
1SE are given in parentheses based on the outcomes from the 10 validation sets. Scenarios: 1: only bulls; 2: all cows; 3: 50% selected at random; 
4: 50% from upper tail; 5: 50% from either tail.
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approximately 1,200 genotyped cows was sufficient to 
boost the accuracy of GBLUP to outperform BLUP 
by between 11 and 19% and also reduced the bias of 
the predictions for yield traits. This demonstrates that 
even for a numerically small commercial dairy breed, 
genomic approaches have significant potential, and 
argues for a program of cow genotyping to further in-
crease accuracy by increasing the size of the training 
set.

The study provided some support for the proposition 
of Habier et al. (2010) that genotyping cows is valuable 
as animals may share more recent relationships and 
thus have more consistent LD. Support comes from the 
estimated genetic correlations (rg) of ~0.6 between the 
phenotypes of the training set of bulls and the training 
set of cows, which was significantly different from 1. 
The training set of bulls used to predict the Guernsey 
Island sub-population contained bulls with over 25,000 
progeny contributing records for each of the traits 
considered here, but their dates of birth spanned over 
50 yr and they come from different sub-populations of 
the breed. Such differences in age and sub-population 

would introduce differences in the linkage relationships 
between the training set of bulls and the Guernsey Is-
land population that provided all the cow data. Never-
theless, other factors may also contribute to the genetic 
correlations observed, such as differences in trait defini-
tions as daily milk records were used for the prediction 
of bulls PTA for yield traits, whereas 305-d lactation 
records were used for cows. These data showed very 
little benefit in using bivariate models to predict breed-
ing values compared with a univariate model, which as-
sumes rg = 1. The explanation lies in 2 opposing effects, 
when rg < 1 the information content of the bull data 
is reduced in its predictive value, potentially reducing 
accuracy, whereas removing the assumption that rg = 
1 removes some bias in the estimating the true marker 
effects in Guernsey Island cows. It would be anticipated 
that as the training set increases in size the bivariate 
model would ultimately emerge as the more accurate 
due to its greater veracity. The imperfect correlation is 
a further factor to incorporate into the formulae of de 
Roos (2011) in attempting to provide an exchange rate 
between the values of cow phenotypes and de-regressed 
bull proofs.

Notwithstanding the value of genotyping cows, a 
numerically small commercial breed will need to be 
cost-effective in establishing a genotyping program and 
this study showed that both imputation and selective 
genotyping can play an important role in this. The 
value of imputation in allowing the routine genotyp-
ing to be carried out with low-density chips has been 
demonstrated in other studies (Cleveland and Hickey, 
2013; Boison et al., 2015). However, this is one of the 
first reports to quantify the value of selective genotyp-
ing for genomic selection in dairy cattle in practice, 
although others (e.g., Jiménez-Montero et al., 2012) 
have suggested benefits from simulations. Compared 
with genotyping 50% of the cows at random, divergent 
selection of 50% using extremes at either tail recovered 
88% of the information that was lost from not genotyp-
ing all the cows. It is important to note that directional 
selection for genotyping was much worse than divergent 
selection for genotyping and worse than random selec-
tion.

In this study random assignment was used for con-
ducting the cross-validation, and this may be less desir-
able for predicting the accuracy of selection of young 
bulls than alternative assignment strategies (Cooper et 
al., 2015) as it has been reported to lead to higher 
estimates of accuracy than appropriate (Pérez-Cabal et 
al., 2012). However, the alternative strategies such as 
forward prediction of young sires or a cut in the study 
defined by time suggested by Cooper et al. (2015) are 
difficult to apply in this small population where only 

Figure 2. The relationship of the reciprocal squared accuracy for 
predicting phenotypes rp

−( )2  of milk yield, fat yield, and protein yield 

for scenarios 2 to 7 inclusive with the reciprocal of information nδ( )−1 , 
see Appendix B), together with their linear trend lines. Milk yield, fat 
yield, and protein yield are shown with circle, square, and diamond 
symbols, respectively. The values of n used were 1, 0.5, 0.5, 0.5, 0.4, 
and 0.3 for scenarios 2 to 7, respectively; δ = 1 for scenarios 2 and 3, 
but depend on the heritability of the trait for all others. For all traits, 
the order of scenarios on the x-axis is 2, 5, 6, 7, 3, and 4.
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cows present in 2014 could be genotyped. For example, 
if young sires with at least 10 daughters were to be 
used, the most recent sample would contain 6 sires born 
in 2007 and 2008. Although these alternative strate-
gies are relevant to prediction accuracy of the young 
animals in the most recent birth cohort, the compari-
son of genotyping strategies among the cows might be 
expected to be more robust to these strategies, with the 
mean absolute genomic relatedness between the train-
ing and validation data sets varying between 0.029 and 
0.032 across the different scenarios.

The value of creating training sets for the purpose 
of genomic prediction with increased genetic variance 
has been explored previously in case-control studies 
(Daetwyler et al., 2008), and using nonrandom mating 
or reproductive technology to increase homozygosity 
(Nirea et al., 2012). Both studies provided theoretical 
justification for the benefits in accuracy from increas-
ing the genetic variance in the training set. Here the 
prediction equation of Daetwyler et al. (2008, 2010) 
was extended to encompass selection of the phenotypes 
for genotyping by considering the genetic variance cap-
tured in the training set. The predictions were broadly 
accurate in predicting order and the magnitude of dif-
ferences. Sampling variation is present in the data and 
the cross-validation, which will affect the performance 
of the predictions through the y-values of Figure 2. 
However, additional potential errors are introduced by 
the use of the UK consensus heritabilities because their 
relevance to the true heritabilities for this population 
has not been established, although they are used for 
the UK genetic evaluations. The predictions derived 
are dependent on the heritability assumed for a trait in 
2 ways: first in the de-regression process, which affects 
all scenarios (through the y-values in Figure 2); and 
second, where selection was practiced, in the prediction 
of genetic variance and consequently in the x-values. 
The differential effect may explain in part why the sce-
narios with divergent selection tend to lie beneath the 
regression lines.

CONCLUSIONS

The study has shown with real data that using cow 
genotypes selected with divergent strategies can provide 
a cost-effective route for building training sets in small 
dairy populations. The correlation between the genomic 
EBV and phenotypes increased when cow phenotypes 
were used for the prediction of genomic EBV. When 
half of the population was genotyped, genotyping only 
individuals with phenotypes in either tail was shown 
to be better than genotyping them at random or ge-
notyping only individuals with upper tail phenotypes. 

Genotyping cows with tail phenotype covered on aver-
age 88% of the difference between the scenario where 
all the cows were genotyped or only half of them were 
genotyped at random. Using GMI for selection of cows 
for genotyping yields a correlation that was comparable 
to the correlations obtained in scenarios when cows 
were selected based on the values for each trait. Geno-
typing only the individuals from either tail will enable 
the Guernsey cattle breed in Guernsey Island and the 
United Kingdom to successfully adopt genomic selec-
tion and use the available financial resources optimally.
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Appendix A

See appendix figures A1–A3.

Appendix B

The prediction formula of Daetwyler et al. (2008, 
2010) modified for the prediction accuracy of pheno-
types by genomic EBV ĝ( ) is of the form r hp

2 2 11= +( )−λ λ , 
where rp is the accuracy, λ = nh2/Me, n is the number 
of training records, h2 is the heritability, and Me is the 
number of independent segments, a property of the 
population genome that is assumed not to vary between 
traits. The derivation involves the ratio of the genetic 
variances in the validation set and the training set (see 
Daetwyler et al., 2008), which is 1 when the training set 
and validation set are random samples from the same 

population. This can be modified for a selected training 
set and randomly sampled validation set with the out-

come r hp
2 2 1

1= +( )−λ λ* * , where λ* * /= nh Me
2  and 

h h g g* *( ) / .2 2= ( )var var  Therefore, accuracy is predict-
ed to increase as the genetic variance in the training set 
increases, a conclusion also reached by Nirea et al. 
(2012). Let δ = ( )var var( ) / .*g g  Daetwyler et al. (2008) 
explored selection arising from case-control studies, but 
directional or divergent selection on phenotype can also 
be incorporated. For directional truncation selection, 
and assuming a normal distribution, δ = −( )1 2k hq , 
where k i i xq q q q= −( ) with iq the intensity of selection 
and xq is the truncation point for N(0,1) for the selec-
tion proportion q (Bulmer, 1971). For divergent selec-
tion with selection proportion q (assumed q/2 upper 
and lower tail), there are 2 sources of genetic variance, 

Figure A1. Heterozygosity rate and proportion of missing genotypes for GeneSeek Genomic Profiler Version 3 chip (25K, Neogen Corp., 
Lexington, KY; left from vertical dashed line: genotypes with <0.15 of missing genotypes; in between horizontal lines: genotypes within the range 
of ±3 SD of overall heterozygosity rate).
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between groups and within groups, and the total vari-
ance is their sum. Within groups the genetic variance is 
var g k hq( ) = −( )1 2

2
/  as previously, and between groups 

is var g i hq( ) / ,2
2 2  giving the result δ = +( )1 2 2

2i x hq q/ /  for 
divergent selection.

The prediction accuracy for rp contains the unknown 
Me but the dependence on the selection can be exam-

ined by considering r hp
− −= ( ) +( )2 2 11 1/ ,*λ  which is a 

linear regression on nδ( )−1 with a slope dependent on h2 
and Me and intercept inversely related to h2. As an ex-
ample for divergent selection with q = 1/2: xq/2 = 0.674, 
iq/2 = 1.271, and δ = 1.472 for h2 = 0.55.

Figure A2. Heterozygosity rate and proportion of missing genotypes for GeneSeek Genomic Profiler HD Version 1 chip (75K, Neogen Corp., 
Lexington, KY; left from vertical dashed line: genotypes with <0.15 of missing genotypes; in between horizontal lines: genotypes within the range 
of ±3 SD of overall heterozygosity rate).
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Figure A3. Heterozygosity rate and proportion of missing genotypes for Illumina BovineHD chip (777K, Illumina Inc., San Diego, CA; left 
from vertical dashed line: genotypes with <0.15 of missing genotypes; in between horizontal lines: genotypes within the range of ±3 SD of overall 
heterozygosity rate).
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