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ABSTRACT

Experimental designs that exploit family information 
can provide substantial predictive power in quantitative 
trait nucleotide discovery projects. Concordance be-
tween quantitative trait locus genotype as determined 
by the a posteriori granddaughter design and marker 
genotype was determined for 30 trait-by-chromosomal 
segment effects segregating in the US Holstein popu-
lation with probabilities of <10−20 to accept the null 
hypotheses of no segregating gene affecting the trait 
within the chromosomal segment. Genotypes for 83 
grandsires and 17,217 sons were determined by either 
complete sequence or imputation for 3,148,506 poly-
morphisms across the entire genome; 471 Holstein bulls 
had a complete genome sequence, including 64 of the 
grandsires. Complete concordance was obtained only for 
stature on chromosome 14 and daughter pregnancy rate 
on chromosome 18. For each quantitative trait locus, ef-
fects of the 30 polymorphisms with highest concordance 
scores for the analyzed trait were computed by stepwise 
regression for predicted transmitting abilities of 26,750 
bulls with progeny test and imputed genotypes. Effects 
for stature on chromosome 11, daughter pregnancy rate 
on chromosome 18, and protein percentage on chromo-
some 20 met 3 criteria: complete or almost complete 
concordance, nominal significance of the polymorphism 
effect after correction for all other polymorphisms, 
and marker coefficient of determination >40% of to-
tal multiple-regression coefficient of determination for 
the 30 polymorphisms with highest concordance. An 
intronic variant marker on chromosome 5 at 93,945,738 
bp explained 7% of variance for fat percentage and 

74% of total multiple-marker regression variance but 
was concordant for only 24 of 30 families. The missense 
polymorphism Phe279Tyr in GHR at 31,909,478 bp on 
chromosome 20 was confirmed as the causative muta-
tion for fat and protein concentration. For effect on fat 
percentage on chromosome 14, 12 additional missense 
polymorphisms were found that had almost complete 
concordance with the suggested causative polymor-
phism (missense mutation Ala232Glu in DGAT1). The 
only polymorphism found likely to improve predictive 
power for genomic evaluation of dairy cattle was on 
chromosome 15; that polymorphism had a frequency of 
0.45 for the allele with economically positive effects on 
all production traits.
Key words: genomic selection, a posteriori 
granddaughter design, quantitative trait nucleotide, 
concordance

INTRODUCTION

Genomic selection was introduced into US dairy 
cattle breeding programs in 2009. Since then, gains in 
the rate of genetic improvement for all traits under se-
lection have been impressive (García-Ruiz et al., 2016). 
Applied methods for genomic evaluation include the 
associated effects of tens of thousands of SNP, even 
though the vast majority of markers have no direct 
effects on the analyzed traits (e.g., VanRaden, 2008), 
because many causative variants have high population-
wide linkage disequilibrium with genetic markers in-
cluded on the SNP chip (e.g., Cole et al., 2009).

Ron and Weller (2007) presented a schematic strategy 
for farm animals to determine whether a specific poly-
morphism does have a direct effect on a quantitative 
trait, which generally is designated as a quantitative 
trait nucleotide (QTN). To date, only 2 polymorphisms 
have met the rigorous criteria that they proposed for 
confirmation of QTN status in dairy cattle. These are 
missense mutations in ABCG2 on chromosome 6 and 
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DGAT1 on chromosome 14 (Grisart et al., 2002, 2004; 
Winter et al., 2002; Cohen-Zinder et al., 2005).

The optimal validation of a QTN is a demonstration 
that replacement of the allele results in swapping one 
phenotypic variant for another (Glazier et al., 2002). 
For dairy cattle, this is still not a viable alternative. 
Considering these limitations, how can one prove that a 
candidate polymorphism is actually the QTN? As noted 
by Mackay (2001), “The only option in these cases is 
to collect multiple corroborating pieces of evidence, no 
single one of which is convincing, but which together 
consistently point to a candidate gene.” Ron and Weller 
(2007) called this strategy of identifying QTN “winning 
by points rather than knock-out.”

Considering that all analyses presently must be 
based on an existing population, the most convinc-
ing proof available that a QTN has been determined 
is concordance—that is, determination for a group of 
animals that their genotypes for the putative QTN 
correspond to their inferred genotypes for the QTL, 
which is defined in this study as a segregating effect 
on a quantitative trait that has been localized to a 
specific chromosomal segment based on genetic linkage. 
Complete concordance is obtained only if the following 
criteria are met: (1) all individuals homozygous for the 
QTL are also homozygous for the putative QTN; (2) all 
individuals heterozygous for the QTL are also heterozy-
gous for the putative QTN; and (3) the same putative 
QTN allele is associated with the positive QTL allele 
in all heterozygous individuals. It should be noted that 
complete concordance is expected only if the observed 
effect is due to one unique biallelic causative variant in 
the QTL region.

Ron and Weller (2007) proposed application of an 
a posteriori granddaughter design (APGD) to deter-
mine QTL genotypes for bulls from large populations of 
cattle genotyped using mid- or high-density SNP chips. 
Similar to the original granddaughter design (Weller 
et al., 1990), sires with many progeny-tested sons are 
analyzed. However, data generated from genotyping 
many bulls with high-density SNP chips are used rather 
than genotyping the sons specifically for application of 
a granddaughter design. Thus, the design is considered 
to be a posteriori. The sons of each bull are assigned to 
1 of 2 groups based on the paternal haplotype that was 
passed to a son for the chromosomal region with the 
putative QTL. Thus, deduction of QTL status is based 
on within-family statistical significance of contrast be-
tween the 2 paternal haplotypes.

The APGD was applied to the US Holstein popula-
tion by Weller et al. (2014) and Wiggans and Weller 
(2015). Both studies analyzed 33 traits: yield (milk, fat, 
and protein and component percentages), milk SCS, 

productive life, daughter pregnancy rate, heifer and 
cow conception rates, service-sire and daughter calving 
ease, service-sire and daughter stillbirth rates, 18 con-
formation traits, and the net merit genetic-economic 
index. The analysis of Weller et al. (2014) included 
52 grandsire families with 9,178 sons. They found 30 
chromosomal segment-by-trait combinations that met a 
probability significance criterion of <10−14 for the effect 
of grandsire haplotype nested within grandsire. Wig-
gans and Weller (2015) analyzed 71 grandsire families 
with 14,246 sons and, excluding the effects on the milk 
production traits associated with the DGAT1 polymor-
phism, they found 56 chromosomal segment-by-trait 
combinations that met this significance criterion. Of 
those that met this criterion, 29 were also significant by 
this criterion in the study of Weller et al. (2014). Of the 
remaining 27 segment-by-trait combinations, all were 
significant at <10−7 in the study of Weller et al. (2014). 
Four of the effects significant in Weller et al. (2014) at 
<10−14 did not meet this criterion in the later study.

A very low statistical significance criterion was ap-
plied for 3 reasons. First, the entire genome was scanned 
for 33 traits, which causes a multiple comparison prob-
lem (Weller et al., 1998). According to the formula of 
Lander and Kruglyak (1995), a nominal statistical sig-
nificance of approximately 5 × 10−5 is required for the 
bovine genome to obtain a genome-wide significance 
of 0.05, assuming a dense marker map. Second, a rela-
tively narrow confidence interval determined by a non-
parametric bootstrap was desired. Wiggans and Weller 
(2015) demonstrated that even with nominal statistical 
probabilities of 10−10, a bootstrap confidence interval 
could include up to half the entire chromosome. Third, 
QTL genotypes of the grandsires must be highly ac-
curate to determine concordance accurately between a 
QTL and a specific polymorphism. Therefore, the QTL 
effect must be large enough so that both type I and 
type II errors will be approximately 1% for at least 20 
of the grandsires included in the analysis.

Assuming that the entire genome contains approxi-
mately 3 × 106 nonredundant polymorphisms with 
minor allele frequencies sufficiently high to achieve 
complete concordance for a segregating QTL detected 
by APGD, the experiment-wise probability of obtain-
ing complete concordance by chance for any SNP will 
be <0.05 with 10 grandsires homozygous for the QTL 
and 8 heterozygous with phase determined (Ron and 
Weller, 2007). In practice, many more grandsires will be 
required. Unless the QTL effect is huge [e.g., the mag-
nitude of the effect on protein percentage associated 
with ABCG2 (Cohen-Zinder et al., 2005)] or the num-
ber of sons per grandsire is very large, QTL status for 
most grandsires cannot be determined unequivocally. 
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In addition, incomplete concordance between QTL and 
QTN may be derived from either genotyping mistakes 
of the putative QTN or incorrect classification of QTL 
status. Therefore, the sample of grandsires with QTL 
status determined must be large enough that the prob-
ability of obtaining even almost complete concordance 
is so small that the null hypothesis of near concordance 
by chance can be rejected even when accounting for a 
huge number of segregating polymorphisms.

In addition to concordance, Ron and Weller (2007) 
proposed other statistical methods to verify that a 
causative polymorphism had been determined. Another 
major indication of QTN discovery is the determina-
tion that this polymorphism accounts for almost all the 
variance due to the QTL and that the effects of addi-
tional polymorphisms in the QTL chromosomal region 
are very small in a model that includes the putative 
QTN effect. Application of this method requires deter-
mination of QTN genotypes on a much larger sample 
of individuals with either phenotypic records or genetic 
evaluations for the traits of interest.

The advent of low-cost whole-genome sequencing 
has made complete sequencing of 60 to 80 APGD 
grandsires and testing discovered polymorphisms for 
concordance possible at a reasonable cost. Hayes et 
al. (2014) initiated the 1000 Bull Genomes Project to 
provide an extended database of variants that could 
be imputed into existing cattle SNP genotype data. As 
of 2016, 423 Holstein bulls had been sequenced. Since 
then, an additional 22 bulls considered as grandsires 
by Wiggans and Weller (2015) have been sequenced. 
VanRaden et al. (2017) demonstrated that using those 
sequence data allowed accurate imputation of complete 
sequence genotypes and haplotype phase for relatives 
of those sires that had been genotyped with mid- or 
high-density SNP chips.

The objective of this study was to determine concor-
dance for the 30 QTL detected by Wiggans and Weller 
(2015) with probabilities of <10−20 for effect of grand-
sire haplotype nested within grandsire based on known 
or imputed genotypes for all grandsire families included 
in the APGD. For all bulls with imputed genotypes 
and genetic evaluations, effects of the putative QTN on 
the trait of interest for the 30 polymorphisms with the 
highest concordance within an approximate confidence 
interval also were determined by step-wise multiple 
regression. Results from the 2 methods were compared 
with effects associated with each marker and with re-
sults from previous studies that analyzed 3 of the puta-
tive QTN found in this analysis, including the effect on 
fat concentration associated with DGAT1. The effect 
on protein percentage associated with ABCG2 was 
not included because the economically positive allele  

(ABCG2A) has almost reached fixation in all cattle 
breeds (Ron et al., 2006) and in the population of se-
quenced grandsires.

MATERIALS AND METHODS

Imputation of Genotypes to High-Resolution  
SNP and Indel Calls

A total of 445 bulls were sequenced previously, and 
26 were sequenced for this study. Processed variant call 
format files from these 471 Holstein bulls were used to 
impute high-resolution SNP and indel variant calls for 
all bulls in the reference population for US genomic 
evaluations. All of the imputed bulls had genotypes 
based on mid- to high-density Illumina (San Diego, 
CA) genotyping arrays with 54,000 to 777,000 SNP. 
The Fortran findhap.f90 imputation program (https:// 
aipl .arsusda .gov/ software/ findhap/ ; VanRaden et 
al., 2011) was used to determine the phase for each 
chromosomal segment. Thus, correspondence between 
QTL and putative QTN phases could be determined 
for grandsires that were heterozygous for a QTL. The 
variant call format files from the 1000 Bull Genomes 
Project included 14,609,220 polymorphisms with a 
minor allele frequency of >0.01. After eliminating re-
dundant polymorphisms (consecutive polymorphisms 
with an identity of >0.95) and polymorphisms with low 
call rates, 3,148,506 polymorphic sites were retained 
(VanRaden et al., 2017). Redundant polymorphisms 
were deleted only in the intergenic regions to match 
the corresponding SNP from the high-density chip that 
had previously been pruned for >0.95 correlations. 
Although elimination of redundant polymorphisms 
should not affect concordance results, it may affect the 
annotation of the selected variants. Imputation was ap-
plied in 3 stages with chromosome segment lengths of 
approximately 5,000 (stage 1), 1,000 (stage 2), and 200 
(stage 3) polymorphic sites.

Selection of QTL and Bulls for Analysis

Wiggans and Weller (2015) found 30 trait-by-chro-
mosomal segments with a nominal statistical probabil-
ity of <10−20 to reject the hypothesis of no effect for the 
grandsire haplotype. Those QTL included 16 traits (fat 
yield, fat and protein percentages, SCS, productive life, 
daughter pregnancy rate, heifer and cow conception 
rates, stature, strength, body depth, dairy form, thurl 
width, rump angle, teat length, and final score) on 11 
chromosomes. These chromosomes included 1,271,638 
polymorphic sites; that is, 40% of the 3,148,506 sites 
in the entire genome after edits. The number of poly-

https://aipl.arsusda.gov/software/findhap/
https://aipl.arsusda.gov/software/findhap/
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morphic sites per chromosome ranged from 79,207 to 
147,911 (Table 1). The current analysis of 83 grandsire 
families with 17,217 sons was based on August 2017 
US genetic evaluations by the Council on Dairy Cattle 
Breeding (Bowie, MD). Of these grandsires, 64 had 
genotypes based on complete sequence. The number of 
sons per grandsire ranged from 100 to 838 (Figure 1); 
for each specific trait, numbers of grandsire families 
and sons were generally fewer because of data edits. 
Each son had a genotype based on a mid- to high-
density Illumina genotyping array and an August 2017 
US genetic evaluation for milk production traits based 
on a progeny test of ≥10 daughters.

Whole-Genome Shotgun Sequencing

Of the 83 grandsire families, 38 were previously 
sequenced by the 1000 Bull Genomes Project or proj-
ect collaborators. An additional 26 grandsires were 
sequenced as part of this study. The remaining 19 
grandsires were not sequenced, and their genotypes for 

polymorphisms not included in the high-density SNP 
chip were determined by imputation. Semen straws 
extracted from each of the 26 grandsires were identified 
within the Cooperative Dairy DNA Repository (Belts-
ville, MD) and were sent to Cofactor Genomics (St. 
Louis, MO) for DNA extraction and library prepara-
tion. Libraries were prepared using robotic automation 
with Illumina TruSeq Chemistry (version 3) reagents 
and were subsequently sequenced on the Illumina 
NextSeq 500 to a target of 20× coverage. Samples 
were sequenced at the USDA Animal Genomics and 
Improvement Laboratory on an in-house NextSeq500 
instrument. Sample sequence data quality was assessed 
via FastQC (https:// www .bioinformatics .babraham .ac 
.uk/ projects/ fastqc/ ) and was found to be comparable 
with data generated on other Illumina sequencing plat-
forms (data not shown). At the time, this sequencer 
was the only instrument that was available in-house. 
Sequence FASTQ files were aligned to the UMD3.1 ref-
erence genome (Zimin et al., 2009) using BWA-MEM 
software (version 0.7.15; Li and Durbin, 2009), and 
alignment files were processed using SAMtools (ver-
sion 1.12; Li et al., 2009). The SNP and indel variants 
were called using the SAMtools and BCFtools mpileup 
variant-calling pipeline. Only the default variant filters 
implemented in SAMtools were used to remove low-
quality variant calls.

Determination of Concordance

Concordance was determined for each QTL except 
for the effect of fat yield on BTA5; that effect is pleio-
tropic to the effect on fat concentration in the same 
chromosomal region. This required application of the 
APGD for each of the 30 QTL. In the previous APGD 
studies, markers from the SNP chips were used to de-

Table 1. Numbers of markers for imputed data used in analysis with 
the a posteriori granddaughter design by chromosome number

BTA Markers (no.)

3 140,056
5 147,911
6 133,115
7 125,168
10 133,261
11 124,421
14 90,416
15 121,606
18 90,963
19 85,514
20 79,207
All 3,148,506

Figure 1. Maximum numbers of sons per grandsire used in analysis with the a posteriori granddaughter design.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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termine grandsire and son haplotypes. In this study, 
haplotypes were determined based on all 3,148,506 
polymorphic sites. Preliminary results showed that at 
least 20,000 markers would be needed for a minimum 
confidence interval of 90% for each QTL (Wiggans and 
Weller, 2015). Stage 1, 2, or 3 imputation segments 
could be used as haplotypes. Using stage 1 segments 
of 5,000 markers would reduce the total number of 
analyses required to cover 20,000 sites but increase the 
risk of generation of “spurious haplotypes” due to re-
combination within segments or genotyping or imputa-
tion mistakes. Using stage 3 haplotypes would increase 
the total number of analyses to >100 for each QTL. 
Thus, stage 2 segments, which included approximately 
1,000 markers, were a reasonable compromise between 
segments that were passed from sire to son without re-
combination and limiting the total number of analyses. 
Wiggans and Weller (2015) divided the entire genome 
into 621 chromosomal segments of approximately 100 
SNP each. With 3,148,506 polymorphic sites, the total 
number of stage 2 chromosomal segments to span the 
genome would be approximately 3,100 (i.e., ~5 times 
the number of segments in their study). Considering 
that the length of the entire bovine genetic map is ap-
proximately 2,800 cM, the probability of recombination 
within a segment of 1,000 polymorphic sites is only 
approximately 1%.

In the preliminary analysis for each QTL, a chro-
mosomal region including 21 stage 2 segments was 
analyzed, with centering on the chromosomal segment 
with the greatest effect in the study of Wiggans and 
Weller (2015). A separate APGD analysis was per-
formed for each stage 2 segment. Thus, a chromosomal 
region spanning at least 21,000 sites was analyzed. A 
chromosomal region of this length should have a high 
probability of including the causative polymorphism 
provided that the region analyzed does in fact include 
the likelihood peak. However, because the new analysis 
included more bulls and used shorter haplotypes com-
pared with the study of Wiggans and Weller (2015), it 
is possible that the likelihood peak may have shifted 
relative to the previous study. We accounted for this as 
follows: if statistical probability for the haplotype effect 
at either of the extreme segments was <10 log units 
greater than the minimum log value, 5 additional stage 
2 segments were included until the criterion was met at 
both ends of the chromosomal region analyzed.

For each chromosomal segment, families or specific 
sons were excluded from analysis for the following rea-
sons.

• If a grandsire was homozygous for his 2 haplo-
types, a haplotype effect could not be estimated 

and his family was excluded. Because frequency 
of the most common haplotype for each chro-
mosomal segment was usually <0.2, exclusion of 
families because of grandsire homozygosity was 
generally rare.

• If a son’s genotype was identical to the grandsire’s 
genotype, then that son was excluded because 
which grandsire haplotype was passed to the son 
could not be determined.

• A son that received neither parental haplotype 
was excluded. Because paternity was verified for 
all sons based on mid- or high-density genotypes, 
the most likely explanation for such a result was 
either a recombination between father and son 
or a mistaken genotype call for a specific poly-
morphism of the son. Ascertainment bias in the 
selected sequence SNP and indel calls derived 
from sequence data or errors in sequence vari-
ant calls could result in pseudohaplotypes (i.e., 
not actually present in the population) as part of 
the imputation process and create discrepancies 
between parents and sons. An additional possibil-
ity is mutation, but previous results have shown 
mutations to be considerably less frequent than 
genotyping mistakes (Weller et al., 2010).

• If <20% of sons received 1 paternal haplotype, the 
family was excluded. In this case we assumed that 
the grandsire was incorrectly listed as heterozy-
gous because of a genotype calling or imputation 
mistake.

• If the number of valid sons per family was <80, 
then the family was excluded. In this case, the 
statistical power was insufficient to determine 
whether the grandsire was homozygous or hetero-
zygous for the QTL.

Preliminary results demonstrated that numbers of 
valid families and sons were generally fewer if haplo-
types were determined based on imputed sequence data 
rather than haplotypes determined from mid-density 
genotyping arrays as in Wiggans and Weller (2015). 
Probability is higher that a sire could be homozygous 
for a shorter haplotype, and haplotypes determined by 
imputed sequence were only about one-fifth the length 
of haplotypes determined from genotyping arrays. In 
addition, haplotypes based on a complete sequence 
have a higher rate of spurious haplotypes because of 
artifacts generated during the sequencing process (~1% 
error rate; Bentley et al., 2008) and spurious vari-
ant calls generated by SAMtools multisample calling 
(1–10% error rate; Li et al., 2009; Baes et al., 2014; Ni 
et al., 2015). Therefore, an additional APGD analysis 
was done for the chromosomal segment with the lowest 
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P-value as determined in Wiggans and Weller (2015) 
for haplotypes based on SNP genotyping arrays.

With respect to determination of QTL genotype, the 
goal was to include as many families as possible and 
still reduce frequency of incorrect determinations. If a 
grandsire is incorrectly determined to be heterozygous, 
then a type I error is made and the probability of this 
error is known. If a grandsire is incorrectly determined 
to be homozygous, then a type II error is made. Deter-
mination of the probability for a type II error requires 
knowledge of the magnitude of QTL effect, which is 
lacking. Therefore, a more stringent criterion was ap-
plied in this case. Homozygosity of grandsire QTL 
genotype was determined by APGD application using 
analysis of chromosomal segments as in Wiggans and 
Weller (2015); heterozygosity was determined by APGD 
application to chromosomal segments of approximately 
1,000 markers based on imputation of complete se-
quence. If the absolute value of the t-statistic for the 
difference between 2 haplotype effects within each fam-
ily was <1.0 and the number of sons in the family was 
≥150, the grandsire was assumed to be homozygous for 
the QTL. The second criterion was applied to reduce 
probability of a type II error. If the absolute t-value 
for haplotypes determined by imputation of complete 
sequence data was >2.5, the grandsire was assumed 
to be heterozygous for the QTL. For families that met 
neither of these criteria, QTL status was assumed to 
be unknown, and these families were discarded from 
the concordance analysis. For DGAT1, previous studies 
have shown that additional polymorphisms in addition 
to the main effect of the missense mutation affect fat 
percentage (Kühn et al., 2004). Therefore, a t-value 
of >2.5 could be obtained due to segregation of these 
polymorphisms, even if the grandsire was homozygous 
for the main effect associated with DGAT1. For this 
reason, only families with t-values of >6.5 were consid-
ered to be heterozygous for the main effect. Likewise, 
all families with t-values of <6.5 and with >150 sons 
were considered to be homozygous for the main effect.

If the grandsire was designated as heterozygous, then 
the same putative QTN allele should be associated with 
the same grandsire allele in all heterozygous families 
(assuming that only 2 QTL alleles are segregating in 
the population and that a specific polymorphism is 
the QTN). Therefore, the number of families for which 
a specific allele of each polymorphism was associated 
with a QTL allele with a positive or negative effect on 
the trait was scored. We then determined which allele 
was associated with the positive QTL effect in the most 
families. The families heterozygous for the QTL were 
then scored as a match only if this allele was associated 
with the positive QTL effect.

Concordance for all polymorphisms within the QTL 
range was then ranked, first by the fraction of heterozy-
gous matches with the more frequent phase among sires 
determined to be heterozygous for the QTL, second 
by the number of correct homozygous matches, and 
third by chromosome position. Because an individual 
APGD analysis was performed for each stage 2 seg-
ment of 1,000 markers, the number of sires determined 
to be heterozygous for the QTL could vary over the 
analyzed chromosomal segments. However, this was not 
the case for sires determined to be homozygous, which 
was based on single analysis of the chromosomal seg-
ment with the lowest P-value from Wiggans and Weller 
(2015). Preference was given to correct heterozygous 
matches first because type I error (i.e., probability that 
a homozygous sire would be incorrectly designated 
as heterozygous for the QTL) was controlled at 1%, 
whereas type II error (a function of the actual QTL 
effect) was unknown. In addition, the probability that 
a specific marker would be heterozygous with correct 
QTL phase by chance is at most 0.25, whereas prob-
ability that a specific marker would be homozygous is 
≥0.5.

Identified variants were annotated with putative 
functional effects using the SNPeff software package 
(Cingolani et al., 2012) and the UMD3.1.71 Ensembl 
gene annotation database. If any of the markers were 
classified by SNPeff as having moderate (typically con-
sisting of missense mutations) or high (e.g., stop gains 
and frameshifts) effects, then the marker was kept as a 
candidate QTN. Only 1 marker annotated with a high 
predicted effect by SNPeff was found.

Estimation of Putative QTN Effects  
on Quantitative Traits

Of the bulls with a PTA based on a progeny test of 
≥10 daughters, 444 were sequenced. For an additional 
26,306 bulls with progeny test, complete sequence was 
determined by imputation. Thus, there were 26,750 
bulls with progeny test based on ≥10 daughters and 
complete sequence based on imputation or sequence. 
Excluding the 83 grandsires, all the other bulls in this 
set were included in the 17,217 sons of the grandsires 
used in the APGD analyses. The set of 26,750 bulls 
with progeny test based on ≥10 daughters and com-
plete sequence was used to determine the effects of the 
30 polymorphisms with the highest concordance scores 
for the analyzed traits by stepwise regression for each 
QTL. The objective of this analysis was to determine 
whether a single marker would explain most of the vari-
ance associated with the QTL in a model that included 
the other linked markers in near concordance. All 30 
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markers were potentially included, but the algorithm 
only added additional markers with P-values of <0.15. 
In many cases, several markers had identical concor-
dance ranks. If markers not included within the first 
30 had identical concordance ranks to those included 
within the top 30, then those markers were also in-
cluded in the regression analysis. Each polymorphism 
was scored as 0, 1, or 2, with 0 and 2 as the 2 homo-
zygotes and 1 as the heterozygote. The polymorphisms 
with the greatest coefficients of determination (R2) in 
the multiple-regression models were then reanalyzed 
by a model that included only the effect of the single 
polymorphism. In addition, individual linear regres-
sions were computed for missense and nonsense poly-
morphisms ranked among the top 60 for concordance.

Those effects were compared with effects from a 
model that estimated the effect of each polymorphism 
corrected for effects of all other polymorphisms using 
the MMAP algorithm (O’Connell, 2017). That algo-
rithm uses a fast, low-memory method to calculate 
additive and (optionally) dominant genetic covariance 
structures based on SNP data. The MMAP algorithm 
was used to estimate the effect associated with each 
polymorphism under the assumption that each ana-
lyzed effect was fixed and that effects of all other poly-
morphisms were random. Another assumption for the 
algorithm was that variance parameters only needed to 
be estimated once for the entire data set (rather than 
once for each marker) because the effect of any given 
marker on a trait typically is small.

RESULTS

Chromosomal Segment Effects

Logarithm of the odds (LOD) scores, APGD prob-
abilities of significance for haplotype effect nested 
within grandsire, and physical locations for starts and 
ends of the approximately 1 Mbp chromosomal seg-
ments with the lowest P-values determined by imputa-
tion of complete sequence data are shown in Table 2 by 
chromosome. Excluding the effect associated with fat 
percentage on BTA14, which had a probability of 3.5 × 
10−283, probabilities ranged from 1.0 × 10−48 for effect 
on SCS on BTA6 to 1.3 × 10−8 for effect on stature on 
BTA14. Although probabilities of <10−20 were obtained 
by APGD for all QTL from Wiggans and Weller (2015), 
probabilities in Table 2 are based on APGD computed 
from segments of approximately 1,000 imputed mark-
ers, which were only about one-fifth the length of the 
segments of Wiggans and Weller (2015) and generally 
included fewer valid families in each APGD analysis. 

Markers with the lowest P-values for 3 traits on BTA5 
(daughter pregnancy rate, cow conception rate, and 
stature) and for 3 traits on BTA6 (productive life, SCS, 
and dairy form) were found in the same chromosomal 
segments, which may indicate that the same polymor-
phism is responsible for each group of effects.

The effect on fat percentage on BTA5 is of special 
interest because it affects milk and fat yields in addi-
tion to fat percentage (Wiggans and Weller, 2015), and 
a segregating QTL in this region has been confirmed 
in other populations (Littlejohn et al., 2016). Figure 2 
shows the negative log probability for APGD effect of 
haplotype within grandsire on fat percentage on BTA5 
along with the chromosome ideogram, chromosome 
position axis, and a condensed Ensembl gene track. 
A peak is evident for segment 11 between 93,387,393 
and 94,165,024 bp (highlighted in gray). The Ensembl 
genes closest to the peak are LMO3 and MGST1. The 
SNP with the greatest effect in this segment, which 
was identified via regression analysis, is downstream of 
MGST1 at 93,945,738 bp.

Haplotype Effects on Economic Traits

Distributions of absolute t-values for haplotype effect 
nested within grandsire for fat percentage on BTA5 are 
shown for all families based on the stage 2 segment 
with the lowest P-value (heterozygote concordance; 
Figure 3a) and for families with ≥150 sons based on 
the segment determined from mid-density genotyping 
array (homozygote concordance; Figure 3b). Although 
the distributions are clearly different from expected 
distributions for no segregating effects, t-values in both 
analyses span almost the entire range up to 6. The 
peak for t around 2.5 for families in both figures may 
approximate the mean for family segregation for the 
QTL; however, if this is the case, then probability of 
obtaining t-values of <1.0 is >5%. Thus, complete con-
cordance may not be obtained even for the causative 
polymorphism.

Distribution of absolute t-values for haplotype effect 
nested within grandsire for fat percentage also is shown 
for BTA14 (Figure 3c) based on mid-density genotyp-
ing arrays for all families. Out of 75 families, only 23 
had absolute t-values of ≤2.0. If only a single biallelic 
polymorphism was responsible for the effect, then the 
number of families with significant t-values should have 
been no more than half. The fact that 70% had nomi-
nally significant t-values corresponds to the finding of 
Bennewitz et al. (2004) and Kühn et al. (2004) that >1 
polymorphism is responsible for the effect on fat per-
centage associated with this chromosomal region. The 
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approximate bimodal distribution also corresponds to 
their findings that both a very large effect and at least 
1 smaller effect are segregating.

Concordance Analysis

Highest concordance for each QTL (Table 3) was 
ranked first by fraction of concordant heterozygotes 
and then by number of concordant homozygotes. Of 
the 60 to 81 families included depending on trait and 
excluding DGAT1, only 14 to 30 could be used to de-
termine concordance. The number of families based 
on haplotypes determined by imputation of complete 
sequence data was generally less than when haplotypes 
were determined using SNP genotyping arrays.

Complete or almost complete concordance (1 discrep-
ancy) for the heterozygotes was obtained for all QTL 
except for fat yield on BTA15, which had 2 discrepan-
cies, but heterozygote concordance was the first crite-
rion used to rank the polymorphisms. Concordance for 
homozygotes was generally lower, even though a family 

was considered to be homozygous for the QTL only 
if the t-statistic was <1.0. A discrepancy in this case 
was recorded if the marker genotype was heterozygous 
despite the low absolute t-value. Evaluation of these 
discrepancies is more difficult because the expected t-
value for families that are segregating for the QTL is 
unknown. For example, if the expected absolute t-value 
is 3.0, then 5% of the heterozygous families should have 
absolute t-values of <1.0.

Complete concordance was obtained only for stat-
ure on BTA14 (3 markers with complete concordance, 
including 2 heterozygous families) and daughter preg-
nancy rate on BTA18 (2 markers with complete con-
cordance, including 14 heterozygous families). The fact 
that only 2 heterozygous families were found for the 
effect on stature corresponds to the relatively low LOD 
score for this trait (Table 2). Almost complete con-
cordance was obtained for strength on BTA14, which 
is correlated with stature, and cow conception rate 
on BTA18, which is highly correlated with daughter 
pregnancy rate. Both traits had LOD score peaks in 

Table 2. Chromosomal segments with the lowest a posteriori granddaughter design probabilities to reject the null hypothesis of no effect for 
the grandsire haplotype

BTA  Trait Segment

Location (bp)

Probability LOD1 scoreStart End

3 Protein percentage 26 15,779,526 16,786,276 1.10 × 10−47 47.0
5 Teat length 19 12,311,835 13,116,209 4.08 × 10−46 45.4
 Body depth 93 82,438,871 83,210,743 1.48 × 10−42 41.8
 Heifer conception rate 99 87,864,332 88,796,250 3.79 × 10−21 20.4
 Dairy form 100 88,796,251 89,461,971 2.20 × 10−48 47.7
 Daughter pregnancy rate 102 90,597,590 91,752,792 1.18 × 10−28 27.9
 Cow conception rate 102 90,597,590 91,752,792 1.06 × 10−26 26.0
 Stature 102 90,597,590 91,752,792 3.19 × 10−32 31.5
 Fat percentage 105 93,387,393 94,165,023 3.91 × 10−45 44.4
 Final score 107 94,988,301 96,044,181 1.94 × 10−30 29.7
 Strength 115 100,106,622 100,570,467 1.18 × 10−26 25.9
 Thurl width 115 100,106,622 100,570,467 7.50 × 10−20 19.1
6 Productive life 93 87,005,580 87,677,438 5.08 × 10−28 27.3
 SCS 93 87,005,580 87,677,438 1.03 × 10−48 48.0
 Dairy form 93 87,005,580 87,677,438 7.24 × 10−30 29.1
 Heifer conception rate 109 100,295,589 101,112,291 1.01 × 10−20 20.0
7 Rump angle 59 43,508,685 44,481,953 5.92 × 10−40 39.2
 Stature 63 48,900,762 50,220,797 5.72 × 10−34 33.2
10 Strength 83 59,020,825 60,176,439 5.92 × 10−37 36.2
11 Stature 89 76,949,730 77,890,814 1.31 × 10−39 38.9
14 Fat percentage2 3 2,218,207 2,834,113 3.54 × 10−283 282.5
 Body depth 11 8,076,515 8,929,250 3.34 × 10−16 15.5
 Stature 11 8,076,515 8,929,250 1.29 × 10−8 7.9
 Strength 12 8,932,287 9,681,497 5.25 × 10−29 28.3
15 Fat yield 85 59,042,548 60,025,824 3.18 × 10−23 22.5
18 Cow conception rate 52 43,570,040 44,387,220 7.38 × 10−31 30.1
 Daughter pregnancy rate 52 43,570,040 44,387,220 1.95 × 10−29 28.7
19 Stature 42 28,838,219 29,629,718 5.28 × 10−20 19.3
 Thurl width 59 44,630,824 45,767,655 3.32 × 10−23 22.5
20 Protein percentage 37 33,375,896 34,305,738 2.18 × 10−28 27.7
1Logarithm of odds.
2Effect associated with DGAT1 (Grisart et al., 2002; Winter et al., 2002).
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the same chromosomal segment. Complete concordance 
was missed by 2 families for 4 additional QTL, includ-
ing the effect associated with DGAT1 on BTA14. For 
fat percentage on BTA5, concordance was found for 
only 24 out of 30 families.

Multiple-Regression Analysis

Polymorphisms with the greatest multiple-regression 
R2 for the trait among the 30 markers with highest 
concordance are listed in Table 4 along with markers 
with concordance scores among the top 60 that were 
denoted as moderate or high priority for complete se-
quence data. Concordance ranks and probabilities in 
the MMAP analysis are also listed. If several markers 
had equal concordance rank based on QTL heterozy-
gotes and homozygotes, then the rank listed is the rank 
of the first marker in that group. The MMAP marker 
set included was slightly different from the set used to 
determine concordance. Therefore, MMAP probability 

was not computed for the marker at position 1,928,347 
bp on BTA14 flagged for stature.

For all but 3 QTL, a marker was found with a 
multiple-regression R2 of >0.01. Because 26,750 bulls 
were included, effects of all markers (Table 4) were sig-
nificant (P < 0.0001). Effects for 17 of those markers 
were nonsignificant (P > 0.05) in the MMAP analysis; 
2 of the nonsignificant markers had an R2 of <0.01. 
Somewhat surprisingly, 6 of the nonsignificant MMAP 
markers had an R2 of >0.05. The difference between 
the 2 analyses is that MMAP corrects for effects of all 
other markers as random effects and multiple regres-
sion does not. Because bulls are related, not accounting 
for this effect could result in biased estimates; however, 
because marker genotypes are correlated, correcting for 
other linked markers reduces the effect associated with 
each marker.

As expected, the R2 for the 2 effects associated with 
fat percentage on BTA14 (0.36) was much higher than 
the R2 for any of the other effects. Surprisingly, the 

Figure 2. Critical region on BTA5 for a QTL with an effect on fat percentage. The tracks from top to bottom are chromosome ideogram 
(90–100 Mbp in box), chromosome position axis (90–100 Mbp; gray bars indicate assembly gaps), condensed Ensembl gene track (90–100 Mbp), 
and −log probability of significance for effect of haplotype within grandsire for a posteriori granddaughter design. Each point represents the 
beginning of a chromosomal segment of approximately 1,000 markers, and each interval corresponds to approximately 1 Mbp. Color version 
available online.
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marker that was an intronic SNP in a gene that has not 
yet been annotated had a slightly higher R2 than found 
for the Ala232Glu missense mutation in DGAT1.

The marker with the highest R2 in the multiple-
regression analysis was within the segment with the 
lowest probability of significance (Table 2) only for 
body depth on BTA14. For the effect on cow concep-
tion rate on BTA18, the marker with the greatest R2 
was not within the chromosomal segment with the low-
est P-value that the null hypothesis was true (Table 
2), but the missense mutation with the highest R2 was. 
Of the 30 QTL tested, 16 markers with the highest R2 
were among the 5 with the highest concordance. Thus, 
correspondence between these 2 criteria generally was 
good. Missense mutations that were ranked among the 
top 5 for concordance were found for stature on BTA5, 
SCS on BTA6, fat percentage and stature on BTA14, 
daughter pregnancy rate on BTA18, and protein per-
centage on BTA20. A Phe279Tyr polymorphism in 

GHR on BTA20 that affects protein percentage was 
noted previously by Blott et al. (2003).

Fraction of QTL Variation Explained by Each Marker

The ratio between marker R2 and total multiple-
regression R2 is an additional indicator of how likely 
it is that a specific marker is the QTN. If total R2 is 
considerably higher than marker R2, then other factors 
in proximity to the marker affect the trait. However, 
even if the specific marker is the QTN, other sites in 
proximity to the QTN also may modify its effect, as 
found for DGAT1 (Bennewitz et al., 2004; Kühn et al., 
2004). Alternatively, if the candidate is not the QTN, 
then the effect observed is the result of population-wide 
linkage disequilibrium. In that case, only a fraction of 
the effect is captured by each marker, and other markers 
should also display effects because of linkage disequi-
librium. If inclusion of additional closely linked mark-
ers does not significantly increase explanatory power, 
then detection of the QTN becomes more likely. The 
effect of a single polymorphism accounted for >90% of 
multiple-regression variance only for fat percentage on 
BTA14. For 11 of the 17 markers with nonsignificant 
(P > 0.05) MMAP effects (Table 4), total R2 was more 
than double marker R2, which casts further doubt that 
causative polymorphisms have been detected. In con-
trast, the missense polymorphism for the effect on SCS 
on BTA6 explained 77% of total variance captured in 
the multimarker model and had an MMAP LOD score 
of >14. This polymorphism had complete concordance 
for all 15 heterozygous families but only 5 of the 8 
homozygous families.

Of the markers with the highest R2 values, only 1 was 
an indel and was an effect associated with fat percentage 
on BTA5. However, this polymorphism is unlikely to be 
causative because R2 was low and its MMAP effect was 
nonsignificant (P > 0.05). The polymorphism on BTA5 
flagged by Littlejohn et al. (2016) is an intronic vari-
ant but explained 74% of multiple-regression variance. 
That effect also had an MMAP LOD score of >100. 
The position of 93,945,738 bp for this SNP was within 
the chromosomal segment with the lowest probability 
of significance for the APGD haplotype effect (Figure 
2; Table 2). However, the SNP was heterozygous in 
only 12 of the 16 families with significant contrasts for 
fat percentage and was homozygous in 13 of 15 fami-
lies with a t-value of <1.0. One possible explanation is 
that more than 1 polymorphism with significant effects 
may be segregating in this chromosomal region, and 
this SNP may represent a “ghost” QTL (Martínez and 
Curnow, 1992).

Of the remaining polymorphisms with the highest 
R2 (Table 4), only the effect associated with protein 

Figure 3. Distribution of absolute t-values for haplotype effect 
nested within grandsires from analysis of fat percentage on BTA5 for 
(a) all families based on approximately 1,000 markers determined by 
imputation and (b) families with ≥150 sons based on segment deter-
mined from mid-density genotyping array and on BTA14 (c) with hap-
lotypes determined from mid-density genotyping array for all families.
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percentage on BTA20 was a missense mutation. The 
effect on thurl width on BTA5 was a 3′ untranslated-
region variant, and all the rest were SNP. Seven of the 
SNP were found in gene introns, including the marker 
with the greatest effect on fat percentage on BTA14; 
the remaining 21 SNP were intergenic variants.

Effects of Missense and Nonsense Mutations

In addition to the markers with the greatest R2 for 
each QTL, an additional 24 markers were flagged be-
cause they were missense or nonsense mutations with 
concordance among the top 60 for each QTL and R2 of 
>0.01. Twelve of these markers were for the effect on 
fat percentage on BTA14 (Table 5), and the remaining 
12 are shown in Table 4. The Ala232Glu polymorphism 
in DGAT1, which was determined to be causative by 
Grisart et al. (2002) and Winter et al. (2002), is in-
cluded in both tables. All of the polymorphisms shown 
in Table 5 but 1 had almost equal R2 for fat percentage 
and are in tight population-wide linkage disequilibrium 
as evidenced by the very low numbers of discrepan-
cies for the genotypes of these polymorphisms with the 

genotypes for the Ala232Glu missense polymorphism in 
DGAT1 (Table 5).

Three missense mutations were flagged for more than 
a single trait (Table 4). In 6 cases, a missense mutation 
was found with an R2 of >90% for the marker with the 
highest R2. Only a single nonsense polymorphism, an 
indel, was found in PCDHB6 on BTA7. That polymor-
phism had a significant effect on stature in the regres-
sion analysis but was nonsignificant (P > 0.05) in the 
MMAP analysis and ranked only 51 for concordance.

The same marker was flagged for SCS and productive 
life on BTA6, which is not surprising because those 
traits are correlated. A missense mutation in NPFFR2 
had almost the same R2 as the SNP with the high-
est R2, and that mutation was also flagged for dairy 
form. For BTA18, different markers had the highest 
R2 for daughter pregnancy rate and cow conception 
rate, even though the 2 traits are highly correlated; 
both markers were significant in the MMAP analysis. 
A missense mutation between ANKRD27 and RGS9BP 
had complete concordance for daughter pregnancy rate 
and was significant at approximately 10−12. In addi-
tion, a missense polymorphism in CHST8 had almsot 

Table 3. Numbers of markers with highest concordance scores for each QTL ranked first by fraction of concordant heterozygotes and then by 
number of concordant homozygotes

BTA  Trait

Heterozygotes

 

Homozygotes

 

All

Concordant Total Concordant Total Concordant Total

3 Protein percentage 8 8  10 14  18 22
5 Teat length 6 6  11 15  17 21
 Body depth 10 10  13 15  23 25
 Heifer conception rate 9 9  9 14  18 23
 Dairy form 11 11  2 8  13 19
 Daughter pregnancy rate 12 13  5 12  17 25
 Cow conception rate 5 5  4 9  9 14
 Stature 8 9  12 13  20 22
 Fat percentage 14 15  10 15  24 30
 Final score 7 8  10 14  17 22
 Strength 8 8  10 16  18 24
 Thurl width 8 9  12 14  20 23
6 Productive life 11 11  4 8  15 19
 SCS 15 15  5 8  20 23
 Dairy form 10 11  9 19  19 30
 Heifer conception rate 9 9  5 11  14 20
7 Rump angle 11 11  6 10  17 21
 Stature 15 15  8 11  23 26
10 Strength 13 13  5 9  18 22
11 Stature 12 12  5 6  17 18
14 Fat percentage 11 11  24 26  35 37
 Body depth 5 5  7 10  12 15
 Stature1 2 2  11 11  13 13
 Strength 3 3  14 15  17 18
15 Fat yield 6 8  9 17  15 25
18 Cow conception rate 7 8  11 11  18 19
 Daughter pregnancy rate1 14 14  11 11  25 25
19 Stature 6 7  5 7  11 14
 Thurl width 9 9  7 9  16 18
20 Protein percentage 10 11  10 10  20 21
1Complete concordance.
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complete concordance for daughter pregnancy rate, and 
its multiple-regression effect was significant for both 
daughter pregnancy rate (~10−11) and cow conception 
rate (~10−12).

In addition to the effect on fat percentage on BTA14, 
candidate causative polymorphisms were found for 3 
QTL based on 3 criteria (Table 6): complete or almost 
complete concordance, MMAP significance, and marker 
R2 >40% of total multiple-regression R2. These are the 
effects on stature on BTA7, daughter pregnancy rate 
on BTA18, and protein percentage on BTA20. For each 
of these QTL, a missense mutation was also found with 
concordance equal or almost equal to the concordance 
obtained for the marker with the highest R2. Although 
R2 were only slightly lower for the missense mutations, 
the MMAP probabilities for the missense mutations 
were almost equal for daughter pregnancy rate and 
lower for protein percentage.

Effects of the Candidate Causative Polymorphisms 
on Milk Production Traits

Effects of markers with the highest R2 for milk pro-
duction traits on 5 chromosomes with significant effects 
for those traits are shown in Table 7. Excluding the ef-
fect associated with fat percentage on BTA14, the low-
est MMAP probability was on BTA5 for the effect of 
the SNP at 93,945,738 bp on fat percentage (Table 4). 
This marker within MGST1 explained 7% of variance 
for fat percentage and 74% of total multiple-marker 
regression variance. Although this intronic variant did 
not have complete concordance in this study, Little-
john et al. (2016) identified the polymorphism as the 
most likely QTN candidate for the New Zealand dairy 

population using different methodologies. This QTL, 
however, is of minimal value for commercial breeding 
because, as with DGAT1, the rare allele that increases 
fat yield and concentration also reduces protein yield 
(Table 7). Thus, the net economic difference between 
the 2 homozygotes will be close to 0 for most commer-
cial selection indices (Miglior et al., 2005). The QTL 
on BTA3 and BTA20 with an allele that increases both 
fat and protein concentration also will have only mini-
mal application in commercial breeding because the 
economically favorable alleles are already at very high 
frequency. Thus, as with ABCG2 (Cohen-Zinder et al., 
2005), the potential for further genetic improvement is 
very small. The only QTL for production traits that 
may have significant value for commercial breeding is 
on BTA15. The frequency of the economically positive 
allele is 0.45, and the substitution effects of this allele 
were an increase in fat yield by 5.4 kg, protein yield by 
2.55 kg, and fat percentage by 0.012 points. However, 
no marker with concordance better than expected by 
chance was found on BTA15, and the most concordant 
marker explained only 2% of variance for fat percentage 
(Table 4).

DISCUSSION

A negative control was done in which 21,000 mark-
ers on BTA7 were tested for concordance with actual 
APGD effects for fat percentage on BTA5. One marker 
had almost complete concordance for 29 out of 30 
families, although this marker did not have a significant 
(P < 0.05) effect on fat percentage in the regression 
analysis. The maximum R2 for fat percentage of the 30 
markers with the highest concordance values was only 

Table 5. Polymorphisms on BTA14 with almost complete concordance with QTL that affects fat percentage

Polymorphism  Gene1
Location 

(bp)
R2 for fat 
percentage

Concordance 
with QTL2

Discrepancies with 
Ala232Glu (no.)3

Ala501Thr  ARHGAP39 1,584,444 0.3631 35 302 (0.011)
Val666Met  RECQL4 (LRRC14, MFSD3) 1,617,841 0.3459 35 61 (0.023)
Gln1086Arg  RECQL4 (MFSD3, GPT) 1,619,555 0.3456 34 638 (0.024)
Ala383Thr  PPP1R16A (GPT) 1,629,600 0.3462 34 606 (0.023)
Thr430Ile  CPSF1 1,736,599 0.3643 35 56 (0.002)
Lys242Glu  GPR172B (FBXL6) 1,765,055 0.3646 35 51 (0.002)
Ala232Glu4  DGAT1 (HSF1) 1,802,266 0.3630 35 —
Val344Ala  HSF1 (DGAT1) 1,808,145 0.3630 35 1 (3.7 × 10−5)
Intron variant5  HSF1 (BOP1) 1,824,653 0.3646 35 53 (0.002)
Asn94Ser  MROH1 1,878,165 0.3629 35 16 (6.0 × 10−4)
Arg103Leu  PARP10 (GRINA) 2,025,096 0.3562 34 858 (0.032)
Trp651Arg  PARP10 2,027,310 0.3563 34 860 (0.032)
Met89Val  ENSBTAG00000048078 5,675,424 0.0662 33 14,869 (0.556)
1Additional gene names shown in parentheses.
2From 38 families with QTL genotype determined; all polymorphisms had complete concordance for grandsires heterozygous for the QTL.
3Fraction of discrepancies out of 26,750 sons with imputed genotypes and EBV for fat percentage in parentheses.
4Polymorphism determined by Grisart et al. (2002) and Winter et al. (2002) as causative.
5Highest R2.
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0.0034. Thus, although almost complete concordance 
could be obtained by chance if >20,000 markers were 
analyzed, the second criterion of a significant effect on 
the trait was not found.

Several factors may explain why maximum con-
cordance was no better than chance for most of the 
analyzed QTL. In the current study, only SNP and in-
dels were considered, and QTN may result from other 
effects, such as copy number variation (e.g., Glick et 
al., 2011). The observed QTL may be caused by 2 or 
more closely linked polymorphisms. Previous studies 
based on linkage analysis have shown that the greatest 
effect is observed for a “ghost” QTL located between 
2 polymorphisms that affect a trait when those poly-
morphisms are linked (Martínez and Curnow, 1992). 
Effects for most QTL were probably too small for 
complete discrimination between heterozygotes and 
homozygotes. As noted in the Materials and Methods 
section, of the 83 grandsires included in the analysis, 19 
were not sequenced; their genotypes were determined 
by imputation from a high-density SNP chip, and some 
may be incorrect. Finally, the lack of concordance for 
families homozygous for the QTL may result partially 
from a bias in favor of calling heterozygotes in sequence 
data. For markers with relatively high minor allele 
frequencies, more heterozygotes were observed than ex-
pected based on the Hardy-Weinberg equilibrium. For 
the bulls with >100 progeny-tested sons, 36,527 mark-
ers on BTA5 had an expected heterozygote frequency 
of >0.4. The observed frequency of heterozygotes was 
1.4 percentage points higher than the expected Hardy-
Weinberg frequency. Much of the difference may be 
because samples of unrelated cattle breeds were used 
for multisample SNP and indel calling in the 1000 Bull 
Genomes Project (Hayes et al., 2014).

Markers that affect milk production traits were found 
on BTA3, BTA5, BTA14, BTA15, and BTA20. Except 
for the effect on BTA15, all effects were chiefly for fat 
and protein concentration and had been found previ-
ously in the Australian Holstein population by Kemper 
et al. (2015). The effect on protein percentage on BTA3 
was localized to 23 to 24 Mbp, whereas previous studies 
found a QTL located between 25 and 45 Mbp (Ashwell 
et al., 2004; Cohen-Zinder et al., 2011).

With respect to effect on fat percentage on BTA14, 
all of the polymorphisms in Table 5 are equally likely 
candidates for the causative polymorphism based only 
on statistical considerations, concordance with effect 
on fat percentage, and fraction of variance explained 
by each polymorphism (except for the missense poly-
morphism at 5,675,424 bp). However, bioinformatic 
and biochemical analyses lend additional support to 
the conclusion that the Ala232Glu polymorphism is 
the main causative polymorphism (Grisart et al., 2004). T
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Wiggans and Weller (2015) raised the possibility that 
the effect on cow fertility found on BTA5 might be the 
same as the HH1 haplotype effect described by Adams 
et al. (2016). However, the positions of the 2 effects are 
25 Mbp apart.

Localization of the effect of fat percentage on BTA5 
between 94 and 95 Mbp close to LMO3 and MGST1 
(Figure 2) is supported by a segregating QTL in this 
region that has been verified in other populations (Lit-
tlejohn et al., 2016). The LMO3 gene has been found 
in human clinical research to be expressed primarily in 
the brain and is frequently found to be associated with 
certain neural blastomas (Aoyama et al., 2005). Func-
tional significance of LMO3 expression on milk produc-
tion traits in cattle is currently unknown. The MGST1 
gene encodes a glutathione S-transferase that protects 
against oxidative stress and is responsible for conjuga-
tion of glutathione to reactive intermediates. The en-
zyme is localized to the mitochondrial membrane and 
endoplasmic reticulum, and known functions include 
aspects of lipid biology; MGST1 has been shown to 
reduce lipid peroxidation products in human mammary 
cell culture (Littlejohn et al., 2016).

Blott et al. (2003) proposed that the missense SNP 
in GHR at 31,909,478 bp on BTA20 is the causative 
mutation for fat and protein concentration. They found 
almost complete concordance for this polymorphism 
in a granddaughter-design analysis of Dutch Holstein 
cattle with 22 paternal half-sib families and 987 sons. 
Almost complete concordance was found for this SNP 
(Table 3), and it was ranked first both by concordance 
and by multiple-regression R2. Thus, this study con-
firms the effect of the missense mutation Phe279Tyr in 
GHR even though complete concordance was not found 
by Blott et al. (2003).

Since the discovery of a missense mutation in ABCG2 
(Cohen-Zinder et al., 2005), no additional causative 
polymorphisms have been verified in the last decade 
based on criteria presented by Ron and Weller (2007). 
The current state of cattle genome annotation suggests 
that most of the flagged polymorphisms, which were in-
tronic or intergenic SNP, might have no putative func-
tional effects on gene expression. However, future cattle 
assembly and annotation projects (Andersson et al., 
2015) may uncover cryptic functional elements in these 
regions that may have a biological effect. Furthermore, 

Table 7. Effects of markers with highest correlation of determination for milk production traits on 5 chromosomes with significant effects for 
those traits computed from 26,750 bulls with imputed genotypes and PTA based on progeny test

BTA
Location 

(bp)  Trait

Genotype1

Mean0 1 2

3 23,347,630 Frequency (no.) 19,685 6,608 457 —
    Milk (kg) −205 −192 −136 −200
    Fat (kg) −4.6 −6.4 −7.5 −5.1
    Protein (kg) −3.3 −6.2 −8.1 −4.1
    Fat (%) 0.013 0.004 −0.008 0.01
    Protein (%) 0.011 −0.001 −0.014 0.008
5 93,945,738 Frequency (no.) 7,644 13,561 5,545 —
    Milk (kg) −149 −201 −269 −200
    Fat (kg) −7.1 −4.9 −2.8 −5.1
    Protein (kg) −2.5 −4.1 −6.1 −4.1
    Fat (%) −0.005 0.011 0.028 0.01
    Protein (%) 0.008 0.008 0.008 0.008
14 1,824,653 Frequency (no.) 16,244 9,169 1,337 —
    Milk (kg) −30 −410 −837 −200
    Fat (kg) −10.0 1.2 11.2 −5.1
    Protein (kg) −0.8 −8.0 −16.7 −4.1
    Fat (%) −0.032 0.063 0.162 0.01
    Protein (%) 0.001 0.017 0.032 0.008
15 54,365,783 Frequency (no.) 5,415 13,320 8,014 —
    Milk (kg) −125 −187 −242 −191
    Fat (kg) 1.2 −4.5 −9.6 −4.9
    Protein (kg) −1.1 −3.5 −6.2 −3.9
    Fat (%) 0.023 0.011 −0.001 0.01
    Protein (%) 0.011 0.008 0.005 0.008
20 31,909,478 Frequency (no.) 18,376 7,603 770 —
    Milk (kg) −212 −144 −160 −191
    Fat (kg) −3.9 −6.2 −13.9 −4.9
    Protein (kg) −2.9 −5.3 −10.9 −3.9
    Fat (%) 0.016 −0.002 −0.028 0.01
    Protein (%) 0.013 −0.003 −0.022 0.008
1Animals heterozygous for marker were designated as genotype 1; 2 homozygotes were designated as genotypes 0 and 2.



Journal of Dairy Science Vol. 101 No. 10, 2018

QUANTITATIVE TRAIT NUCLEOTIDE DETERMINATION 9105

identifying markers with significant effects on economic 
traits and incorporating those markers into SNP panels 
used for genomic evaluation are still worthwhile even if 
they are not necessarily causative polymorphisms.

CONCLUSIONS

The prediction of Weller and Ron (2011) of the utility 
of grandsires with complete genome sequence to deter-
mine QTN based on APGD concordance has been only 
partially realized. Complete concordance was obtained 
only for stature on BTA14 and daughter pregnancy 
rate on BTA18. Effects for stature on BTA11, daughter 
pregnancy rate on BTA18, and protein percentage on 
BTA20 met 3 criteria: complete or almost complete 
concordance, significance of the polymorphism ef-
fect after correction for all other polymorphisms, and 
a marker R2 >40% of total multiple-regression R2 
for the 30 polymorphisms with highest concordance. 
An intronic variant SNP on BTA5 at 93,945,738 bp 
explained 7% of variance for fat percentage and 74% 
of total multiple-marker regression variance but was 
concordant for only three-fourths of families with 
significant contrasts for that trait. Ten missense poly-
morphisms were in almost complete concordance with 
the Ala232Glu polymorphism in DGAT1, the causative 
polymorphism for effect on fat percentage on BTA14. 
This study confirmed the finding of Blott et al. (2003) 
that a missense polymorphism in GHR at 31,909,478 bp 
on BTA20 is the causative mutation for fat and protein 
concentration. The only QTL that is likely to improve 
predictive power significantly for genomic evaluation of 
dairy cattle for production traits is on BTA15 with an 
allelic frequency of 0.45 for the economically favorable 
allele. Although this study uses the largest data set 
of whole-genome sequence for grandsires and sons, the 
power of the concordance test to determine QTN is 
still rather limited. The small effects of the underlying 
QTN hinder deduction of grandsire genotypes for the 
QTL without error, which agrees with the infinitesimal 
model for quantitative traits. Incorporating markers 
flagged in this analysis into SNP panels used for ge-
nomic evaluation is still worthwhile even if they are not 
necessarily the causative polymorphisms.
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