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ABSTRACT

The variance of gametic diversity σgamete
2( ) can be 

used to find individuals that more likely produce prog-
eny with extreme breeding values. The aim of this 
study was to obtain this variance for individuals from 
routine genomic evaluations, and to apply gametic vari-
ance in a selection criterion in conjunction with breed-
ing values to improve genetic progress. An analytical 
approach was developed to estimate σgamete

2  by the sum 
of binomial variances of all individual quantitative trait 
loci across the genome. Simulation was used to verify 
the predictability of this variance in a range of scenari-
os. The accuracy of prediction ranged from 0.49 to 0.85, 
depending on the scenario and model used. Compared 
with sequence data, SNP data are sufficient for esti-
mating σgamete

2 . Results also suggested that markers 
with low minor allele frequency and the covariance be-
tween markers should be included in the estimation. To 
incorporate σgamete

2  into selective breeding programs, we 
proposed a new index, relative predicted transmitting 
ability, which better utilizes the genetic potential of 
individuals than traditional predicted transmitting 
ability. Simulation with a small genome showed an ad-
ditional genetic gain of up to 16% in 10 generations, 
depending on the number of quantitative trait loci and 
selection intensity. Finally, we applied σgamete

2  to the US 
genomic evaluations for Holstein and Jersey cattle. As 
expected, the DGAT1 gene had a strong effect on the 
estimation of σgamete

2  for several production traits. How-
ever, inbreeding had a small impact on gametic vari-
ability, with greater effect for more polygenic traits. In 
conclusion, gametic variance, a potentially important 
parameter for selection programs, can be easily com-

puted and is useful for improving genetic progress and 
controlling genetic diversity.
Key words: Mendelian sampling, gamete, 
heterozygosity, selective breeding, dairy cattle

INTRODUCTION

Since the introduction of marker-assisted selection 
and genomic selection, technological improvements 
have resulted in widespread incorporation of molecular 
information into genetic evaluations (Nejati-Javaremi 
et al., 1997; Meuwissen et al., 2001; Schaeffer, 2006). 
Increased prediction accuracy, along with reduced gen-
eration intervals, has made genomic selection an impor-
tant tool for achieving fast progress in dairy selection 
programs (García-Ruiz et al., 2016). Despite concerns 
about inbreeding in selection and mating designs, most 
selection programs only consider breeding values when 
making selection decisions. Even with genomic selec-
tion models, genomic breeding value or PTA and evalu-
ation of future progeny are mostly based on expected 
breeding values without consideration of the variability 
of those values due to Mendelian sampling.

In addition to breeding value or PTA, other selection 
strategies have been proposed to increase the rate of 
genetic progress. One idea was to select animals that 
will provide greater genetic gains in the future rather 
than choosing the best animals in the current popu-
lation. Goiffon et al. (2017) showed improved genetic 
gains when selecting for the best gametes from a subset 
of individuals in a population. Segelke et al. (2014) dis-
cussed the potential use of the variation within groups 
of offspring, which allows the assignment of probabilities 
to obtain progeny with a breeding value over a given 
threshold, as well as the number of matings required. 
In a follow-up study, Bonk et al. (2016) showed how 
exact within-family genetic variation can be calculated 
using data from phased genotypes. Recently, Müller et 
al. (2018) proposed a new selection criterion based on 
the expected maximum haploid breeding value. Col-
lectively, these studies suggest that the incorporation of 
variation of future gametic values into mating decisions 
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can improve genetic progress on top of the selection on 
breeding values.

However, a few questions need to be answered before 
the application of gametic variance to breeding pro-
grams, such as how to assess the variation of future ga-
metic values of an individual, how large is the gametic 
variance, how to use this information for selection, and 
how to estimate the variance of gametic diversity and 
use it in existing genomic evaluations. In this study, 
we aimed to address these questions from a statistical 
point of view, demonstrating the equivalence between 
gametic variance and Mendelian sampling variance in 
the classical BLUP (pedigree) model. We also sought 
to explore how this variance can be used as a selection 
criterion in conjunction with breeding values, with the 
goal of maximizing future genetic gains. We propose 
an approach for estimating this variance from routine 
genomic evaluations, verifying the adequacy of the es-
timates for individuals with and without progeny, and 
estimating the variance of breeding values of future 
progeny for a given mating. Finally, we evaluate the ap-
plication of gametic variance to improve the selection of 
dairy traits in the US Holstein and Jersey populations.

MATERIALS AND METHODS

Estimation of the Variance of Gametic Diversity

We refer to the variance of gametic diversity as 
σgamete

2 , which is equivalent to half of the Mendelian 
sampling variance (Appendix A1). σgamete

2  measures the 
deviation of progeny breeding values from parent aver-
age and can be calculated using the probabilities of 
transmission of alleles at all QTL from an individual to 
its gametes. Gametic variance represents the variability 
of all possible gametic values generated by the permu-
tation and recombination of each parental chromosome. 
In fact, only the heterozygous loci of an individual 
contribute to σgamete

2 , so we only consider heterozygous 
loci in the following text.

Let’s first consider one locus. For a biallelic locus j of 
an individual i with allele substitution effect αj, σgamete

2  
can be calculated from a binomial variance of 
σ α[ ] ,j jnp p2 21= −( )  where the probability of transmis-
sion of a reference allele to a gamete p = 0.5 and the 
number of alleles transmitted to a gamete n = 1. When 
2 loci, j and k, are considered for an individual i, the 
resulting variance can be obtained as

	 σ σ σ σ[ ]j k jkj k+ [ ] [ ]= + +2 2 2 2 	

	 and σ α αjk jk j k j kp p p= −( ) ,	 [1]

where pj = pk = 0.5, and pjk is the probability that the 
2 reference alleles of the 2 loci are transmitted together; 
pjk can be obtained from the linkage phase and recom-
bination rate between the 2 loci. For example, pjk = 
0.25 and σjk = 0 when the loci are in linkage equilibri-
um; pjk = 0.5 and σjk j k= 0 25. α α  when the 2 reference 
alleles are on the same chromosome and the loci are in 
complete linkage.

Extending this calculation from 2 loci to all QTL on 
the genome, the σgamete

2  of individual i can be obtained 
as the sum across all N heterozygous QTL:
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This can be represented in matrix format as follows:

	 σ α α α αgamete
2

1 1= [ ] [ ]′… …N NM ,	 [2]

where αj j N, ...,=( )1  are the allele substitution effects, 
and M is the (co)variance matrix of the Mendelian 
transmission probabilities for the N heterozygous loci:
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where aljk is a phase indicator for loci j and k, with 
value 1 when both loci have the reference allele on 
the same chromosome and −1 otherwise; cMjk is the 
genetic distance between the 2 loci (in centimorgans). 
Any 2 loci with genetic distance >50 cM on the same 
chromosome, or on different chromosomes, are assumed 
to be independent and thus have zero values for the 
corresponding elements of M. When all the loci are 
independent,

	 M =


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Instead of using genetic distances, M can be set up 
when direct recombination rates are available.
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To estimate gametic variance in real data where ge-
nomic evaluation is available, we proposed to use the 
estimated SNP effects to replace true QTL effects in 
Equation [2]. This approximation of QTL with SNP 
marker effects is similar to that described by Bonk et 
al. (2016). Note that using estimated SNP effects in [2] 
may bias the estimation due to the covariance between 
estimated effects of SNP in linkage disequilibrium (LD) 
and potential biases from shrunken estimators of SNP 
effects, which warrants further investigation.

Application of Gametic Variance  
in Selection Programs

A new selection strategy using σgamete
2  can be pro-

posed, focusing on the future genetic progress (Bijma et 
al., 2018). When a small proportion of animals are se-
lected for breeding, σgamete

2  can help identify those that 
are most likely to produce progeny with extreme breed-
ing values. Assuming selection intensity is maintained 
across generations, the average genetic value of the 
animals selected in the future will be related to the 
variance of gametes of the selected animals in the cur-
rent generation. The average breeding value transmit-
ted to future progeny can be calculated by summing 
the expected value and i times the standard deviation 
of gametic diversity i gameteσ( ). The selection intensity (i) 
represents the number of standard deviations between 
the population average and the average of selected in-
dividuals. The same intensity can be applied when us-
ing PTA as the expected value and σgamete as standard 
deviation, to obtain the mean breeding value transmit-
ted to the selected individuals in the next generation. 
Similar approaches have been proposed by Lehermeier 
et al. (2017) via a usefulness criterion (UC) with ge-
nomic EBV (GEBV) and the standard deviation of a 
given mating.

Here, we propose a new selection criterion relative to 
the intensity of selection applied in the next generation 
(if) for an individual i (unknowing mating),

	 RPTA PTA ii i gamete i f= + ×σ _ ,	 [3]

where RPTAi (relative PTA) is the average of the ge-
netic values relative to the group of progeny that will 
be selected in the future (see Appendix A2). In addi-
tion, we introduce a new concept of coefficient of rela-
tive variation (CRV) as a measure of the variability 
of the additive genetic values (u) transmitted from an 
individual to its progeny (Appendix A3). The CRV of 
an individual i is defined as follows (where E indicates 
expected value):

	 CRV
E u

i
gamete

i

=
( )

σ

0 5 2.
.	 [4]

Simulation

To verify the estimation of σgamete
2  by genomic models 

and the use of this new parameter to aid selection, we 
simulated different scenarios with various QTL, geno-
type, and phenotype data using the QMSim version 
1.10 software (Sargolzaei and Schenkel, 2009). In brief, 
we simulated a historical population, a 10-generation 
recent population, and a 10-generation future popula-
tion (Table 1).

To mimic real populations, a historical population 
was simulated with the same proportion of males and 
females that were mated randomly. This population 
was generated in 3 phases: the first phase consisted 
of 500 generations with a constant population size of 
1,000 individuals; the second phase had 500 generations 
with a constant reduction of population size from 1,000 
to 200 to generate LD and establish drift-mutation bal-
ance; and the third phase included 10 generations of 
expansion, where the population size increased from 
200 to 3,000. From the last generation of this historical 
population, 200 males and 800 females were randomly 
selected as founders to generate the study population, 
which consisted of 10 generations with 5 progeny per 
dam and a ratio of 50% males in the offspring. We 
simulated a selection for breeding values estimated by 
the classical BLUP (Henderson, 1975). The replacement 
ratio was set at 20% for dams and 60% for sires (Brito 
et al., 2011), and mating was random among selected 
individuals. The replacement ratio is the proportion of 
animals to be culled and replaced in each generation.

From the study population (last 10 generations of the 
simulation), genotype and QTL data were obtained for 
the 9th generation (treated as a reference population) 
and the 10th generation (the validation population). 
The marker effects were first estimated in the reference 
generation. The σgamete

2  values for all individuals were 
estimated for both the reference and validation popula-
tions using the marker effects estimated in the reference 
generation. For comparison, true gametic variance was 
also calculated using the QTL effects and their geno-
type data from the simulation.

To reduce computational load, a small genome, with 
4 autosomal chromosomes of 50 cM each, was simu-
lated. The mutation rate was fixed at 2.5 × 10−5 in 
the historical population. The number of crossovers was 
sampled from a Poisson distribution. A total of 200,000 
markers and different sets of QTL were simulated to be 
randomly distributed along the genome. After the ge-
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nome was simulated, a panel with 10% of the polymor-
phic markers was sampled every 0.5 cM and another 
panel with 20% of the markers was sampled every 0.5 
cM. The first panel was chosen to mimic a high-density 
SNP panel and the second for sequence data. A detailed 
description of the parameters is reported in Table 1.

Six traits were simulated with heritabilities of 0.1, 
0.3, and 0.5 and 20 QTL (i.e., 0.1 QTL per cM) or 200 
QTL (i.e., 1 QTL per cM), respectively. We used 2 
QTL densities similar to those used by Meuwissen et al. 

(2001). The QTL effects were generated based on a 
gamma distribution with parameter β = 0.4 (Hayes and 
Goddard, 2001). The phenotypic variance was assumed 
to be 1 for all traits. Four replicates were used for each 
trait. In addition, 10 future generations were simulated 
where the individuals were selected either by the true 
breeding value (T_PTA) or by true RPTA (T_RPTA) 
to verify and compare the genetic gains obtained using 
these criteria. To assess the effect of these indices on 
selection in the future generations, the replacement ra-

Table 1. Summary of simulation parameters

Parameter   Value

Genome parameter
  Genome size 200 cM
  Number of chromosomes 4
  Number of QTL 20 and 200
  Number of markers 10,000 (high-density panel) and 20,000+ QTL (sequence data)
  Mutation rate, QTL 2.5 × 10−5

  Mutation rate, marker 2.5 × 10−3

  Marker positions in genome Evenly spaced
  QTL position in genome Random (uniform distribution)
  QTL allele effect Gamma distribution (β = 0.4)
Trait parameters
  Number of traits 6
  Heritability 0.10, 0.30, 0.50
  Phenotypic variance 1
  Sex-limited trait No
Population structure parameters
  Historical generation
    Phase 1
      Number of generations 500
      Number of animals Constant (500 males and 500 females)
      Mating Random
    Phase 2
      Number of generations 500
      Initial number of animals 1,000
      Final number of animals 200 (100 males and 100 females)
      Mating Random
    Phase 3
      Number of generations 10
      Initial number 200 (100 males and 100 females)
      Final number 3,000 (1,500 males and 1,500 females)
      Mating Random
  Recent generation
    Number of generations 10
    Reference population 9th
    Validation population 9th and 10th
    Number of offspring per dam 5
    Founders 1,000 (200 males 800 females)
    Mating Random
    Selection BLUP
    Cutting BLUP
    Replacement 20% females and 60% males
    Overlapping generation Yes
    Generation 9–10 (predictability) Correlation σ σgamete gamete estimated 2 2, _( )
  Future generation
    Number of generations 10
    Criterion of selection1 T_PTA = TRUE/2 or T_RPTA (TRUE/2) + σgamete

2

    Number of offspring per dam 5 or 10
    Replacement 100% females and 100% males
    Better criterion Genetic gain per generation
1T_PTA = true PTA; T_RPTA = true relative PTA; σgamete

2  = variance of gametic diversity.
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tio was maintained at 100% and the number of offspring 
per dam was 5 (corresponding to a selection intensity of 
0.996 for females and 1.76 for males) or 10 (correspond-
ing selection intensities of 1.4 for females and 2.06 for 
males). As the predicted σgamete

2  is a latent variance, its 
realized value depends on the number of progeny of an 
individual. Any inference using this variance should be 
regarded as a bet (probability of an event considering 
the number of attempts). Therefore, the selection in-
tensity applied to RPTA (if) may need to be adjusted 
accordingly, and 3 values of if (0.5, 0.8, and 1) were 
tested in this study.

Genomic Analysis

Because σgamete
2  depends on the marker effects in ge-

nomic models, we used a model that assumed homoge-
neity of variance of marker effects, GBLUP (SNP-
BLUP), and another model that allowed heterogeneity 
of marker effects with differential shrinkage through 
the improved Bayesian LASSO (BLASSO; Legarra et 
al., 2011). The analyses were performed using the GS3 
v.3 software (Legarra et al., 2015). The model included 
the population mean, marker effects, and residual. Only 
markers with minor allele frequency (MAF) >0.05 
were considered. For estimation of additive and residu-
al variances, the simulated true values were used as 
initial values to reduce computational complexity, fol-
lowed by 20,000 iterations with the burn-in of 2,000 
initial chains.

Application of Gametic Variance to Real Data

The data used were part of the 2017 US genomic 
evaluations from the Council on Dairy Cattle Breeding 
(CDCB, Bowie, MD), consisting of 1,364,278 Holstein 
and 164,278 Jersey cattle from the national dairy cattle 
database. Five dairy traits based on up to 5 lactations 
were analyzed: milk (MY), fat (FY) and protein (PY) 
yields, and fat (F%) and protein (P%) percentages. 
The genotype data were generated from different SNP 
arrays with the number of SNP ranging from 7K to 
50K. All individuals were imputed to a common panel 
of 60,671 SNP and their linkage phase were determined 
by FindHap version 3 (VanRaden et al., 2011). The 
σgamete

2  was calculated using Equation [2] with estimated 
SNP effects ˆ .α1( )  The marker effects were derived from 
the PTA obtained from the genomic evaluation. Sex-
specific recombination rates between SNP markers in 
Holstein and Jersey cattle were directly used in this 
study (Ma et al., 2015; Shen et al., 2018). Thus, a 
modification to the off-diagonal elements of the M ma-

trix in Equation [2] was applied to incorporate recom-
bination rate

	 Mjk jk
jkal

rate
= − +









2

0 25. ,	

when the recombination rate is <0.5; and Mjk = 0 when 
the rate ≥0.5.

RESULTS AND DISCUSSION

Estimation of Gametic Variance  
with Genomic Models

The variance of progeny breeding values has been 
investigated in previous studies (Cole and VanRaden, 
2011; Segelke et al., 2014; Bonk et al., 2016). Here, we 
sought to use simulation to evaluate the predictability 
of gametic variance as a parameter for selection. To 
evaluate the predictability, a comparison with classical 
simulation studies with genomic prediction was adopt-
ed. The variance of gametic diversity σgamete

2( ) was cal-
culated considering both dependence and independence 
between loci, using all QTL and QTL with MAF ≥5%, 
and utilizing high-density SNP and sequence data with 
marker effects obtained from genomic models. The 
Pearson correlation between the true and estimated 
σgamete

2  ranged from medium to high (Table 2), similar 
to those studies on breeding values (Meuwissen et al., 
2001; Daetwyler et al., 2010; Clark et al., 2011). In 
general, the correlation increased when the heritability 
(h2) of traits increased, whereas the same relation was 
not apparent when the number of QTL was large. Dif-
ferently, for the GEBV prediction, the increase in ac-
curacy has been reported with increased h2 and for 
scenarios with a small number of QTL, particularly 
when these were estimated by differential shrinkage 
models (Daetwyler et al., 2010; Clark et al., 2011).

We observed higher correlations between the true 
and predicted σgamete

2  using BLASSO compared with 
GBLUP in all scenarios (Table 2). These results were 
partly due to the small genome and large QTL effects 
simulated. Although GBLUP can have a similar or 
slightly better performance for prediction of GEBV 
than differential shrinkage models for scenarios with a 
large number of QTL (Daetwyler et al., 2010), the ac-
curacy of the estimated marker effects, mainly for QTL 
regions, is greater from differential shrinkage models 
(Meuwissen et al., 2001; Shepherd et al., 2010; Legarra 
et al., 2011). For estimating σgamete

2 , the marker effect 
has a greater impact than for GEBV prediction because 
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σgamete
2  uses the squared marker effects as well as the 

dependency of the chromosome segments. Therefore, 
this observation can also be attributed to the greater 
accuracy of the marker effects estimated by BLASSO 
and to the high dependency of the chromosome seg-
ments simulated.

The effect on prediction was inferred by a linear re-
gression between true and estimated σgamete

2 . For the 
intercept of regression (a), GBLUP had a lower scale 
effect (close to zero) than BLASSO but the difference 
was not large (Table 3). A low scale effect is important 
for σgamete

2  prediction because it affects the precision of 

the limit values of the confidence interval for future 
progeny PTA. The scale effect may be affected by the 
prediction models and by factors inherent to the trait. 
However, GBLUP had a larger prediction bias, worse 
values of mean squared error, and regression coefficients 
(b) more different from 1 (Table 3). For genomic pre-
diction, lower bias has also been reported for differential 
shrinkage models (Meuwissen et al., 2001). Our result 
can be attributed to the accuracy of the estimated 
marker effects and to the small number of independent 
chromosome segments simulated.

For a trait with h2 = 0.10 and 20 QTL (Table 2), the 
correlations between σgamete

2  obtained with all QTL and 

Table 2. Pearson correlations between variance of gametic diversity for all QTL σg
2( ), for QTL with minor allele frequency (MAF) ≥0.05 σgm

2( ) 
and disregarding the covariances for all QTL σd

2( ) and QTL with MAF ≥0.05 σdm
2( ), and their estimations using a high-density marker panel and 

sequence data by genomic BLUP (bp) and Bayesian LASSO (ls), considering σ σgbp gls
2 2 and ( ) and disregarding σ σdbp dls

2 2 and ( ) the dependency 

between the markers1

Trait

 
Gametic 
variance

High-density SNP

 

Sequence data

 

QTL data

h2  
QTL 
(no.) σgbp

2 σgls
2 σdbp

2 σdls
2 σgbp

2 σgls
2 σdbp

2 σdls
2 σg

2 σgm
2 σd

2 σdm
2

0.1 20 σg
2 0.49 0.56 0.17 0.39 0.46 0.57 0.20 0.40 — 0.75 0.96 0.69

σgm
2 0.53 0.74 0.21 0.54 0.48 0.75 0.25 0.55 0.75 — 0.66 0.93

σd
2 0.45 0.53 0.15 0.43 0.43 0.53 0.19 0.43 0.96 0.66 — 0.71

σdm
2 0.50 0.74 0.18 0.61 0.45 0.73 0.24 0.61 0.69 0.93 0.71 —

200 σg
2 0.50 0.60 0.29 0.37 0.46 0.61 0.29 0.40 — 0.96 0.50 0.48

σgm
2 0.48 0.61 0.29 0.39 0.45 0.63 0.30 0.41 0.96 — 0.46 0.49

σd
2 0.29 0.28 0.51 0.30 0.28 0.27 0.48 0.31 0.50 0.46 — 0.97

σdm
2 0.27 0.29 0.52 0.32 0.26 0.29 0.49 0.33 0.48 0.49 0.97 —

0.3 20 σg
2 0.64 0.83 0.28 0.66 0.59 0.83 0.07 0.65 — 0.94 0.95 0.90

σgm
2 0.65 0.87 0.28 0.68 0.59 0.87 0.07 0.68 0.94 — 0.90 0.95

σd
2 0.60 0.81 0.30 0.69 0.54 0.81 0.07 0.68 0.95 0.90 — 0.95

σdm
2 0.60 0.85 0.30 0.71 0.55 0.85 0.07 0.70 0.90 0.95 0.95 —

200 σg
2 0.63 0.77 0.25 0.49 0.59 0.77 0.29 0.48 — 0.95 0.55 0.52

σgm
2 0.62 0.78 0.25 0.51 0.57 0.78 0.29 0.49 0.95 — 0.53 0.53

σd
2 0.42 0.48 0.52 0.63 0.40 0.49 0.54 0.62 0.55 0.53 — 0.99

σdm
2 0.41 0.48 0.52 0.63 0.39 0.48 0.54 0.63 0.52 0.53 0.99 —

0.5 20 σg
2 0.54 0.67 0.28 0.50 0.48 0.66 0.18 0.49 — 0.86 0.94 0.81

σgm
2 0.51 0.67 0.26 0.47 0.44 0.65 0.16 0.46 0.86 — 0.79 0.93

σd
2 0.52 0.64 0.30 0.53 0.46 0.63 0.19 0.51 0.94 0.79 — 0.85

σdm
2 0.49 0.64 0.28 0.51 0.43 0.63 0.18 0.49 0.81 0.93 0.85 —

200 σg
2 0.79 0.85 0.37 0.51 0.76 0.84 0.29 0.51 — 0.95 0.65 0.62

σgm
2 0.77 0.86 0.37 0.55 0.74 0.86 0.30 0.55 0.95 — 0.64 0.65

σd
2 0.53 0.61 0.49 0.83 0.52 0.61 0.38 0.83 0.65 0.64 — 0.98

σdm
2 0.51 0.61 0.49 0.85 0.50 0.61 0.37 0.85 0.62 0.65 0.98 —

1Values in bold represent the best estimates.
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with QTL of MAF ≥5% were of moderate to high mag-
nitude, lower than that of other traits (high magni-
tude), resulting in lower correlations with the σgamete

2  
estimated by genomic models. Although this result may 
be due to allele frequency fluctuations in historical 
population, it also implies that QTL with low MAF are 
important for obtaining accurate estimates of σgamete

2 . 
This variance does not depend directly on population 
allele frequencies but on the individual’s heterozygote 
status. Although MAF filtering (≥5%) can be used to 
improve the prediction of GEBV (Uemoto et al., 2015), 
markers with low MAF may have greater linkage dis-
equilibrium with QTL with low MAF, providing better 
predictions of gametic variance.

To facilitate rapid calculation of σgamete
2 , we tested 

some scenarios without considering the covariance (de-
pendence) between markers. However, the correlation 
between true and estimated σgamete

2  was always lower 
compared with the full model, with the difference rang-
ing from moderate to high when the estimates were 
obtained from QTL, and from low to high when ob-
tained from the marker effects (Table 2). However, the 
high correlation observed for one of the scenarios (h2 = 
0.30 and QTL = 20) can be attributed to the random 
distribution of QTL in the genome. Therefore, covari-
ance between markers should always be included for 
calculating σgamete

2 , and thus, be preferred over the tra-
ditional Mendelian sampling variance (Appendix A1). 
This result is consistent with Bonk et al. (2016), who 
recommended the use of haplotype and direct recombi-
nation data (Cole and VanRaden, 2011).

No difference in correlation between true and esti-
mated σgamete

2  from BLASSO was observed between the 
high-density SNP and sequence data scenarios (Table 

2), indicating that SNP panels with moderate densities 
are sufficient for estimating σgamete

2 . However, a decrease 
in correlation was observed for estimates obtained with 
GBLUP when the sequence data panel was used, re-
gardless of the number of simulated QTL. For GEBV 
prediction, Clark et al. (2011) observed a small differ-
ence in performance using differential shrinkage with 
sequence data compared with medium-density SNP 
panels. Pérez-Enciso et al. (2017) also reported a mod-
est increase in accuracy using differential shrinkage 
model on sequence data. Therefore, sequence data are 
unlikely to offset SNP panels for predicting GEBV 
when the number of loci is large and the prior given to 
each SNP is uniform. Although no improvement in ac-
curacy for σgamete

2  was observed with an increased num-
ber of markers, the difference in performance between 
the 2 types of methods was in line with the literature 
on GEBV studies. This fact, together with the increase 
in overestimation due to an increased number of mark-
ers (Table 3), confirms the preference of shrinkage 
models for estimating σgamete

2  in our simulation of small 
genome and relative large QTL effects.

The correlation between true and predicted CRV was 
lower than that of σgamete

2  (Supplemental Table S1; 
https:​/​/​doi​.org/​10​.3168/​jds​.2018​-15971). There was no 
unanimous model, but GBLUP showed better predic-
tion performance for many scenarios, whereas BLASSO 
had better results when ignoring the covariance be-
tween markers in scenarios with moderate heritability 
and a small number of QTL. Generally, the prediction 
with high-density markers showed a higher accuracy 
than that with sequence data. The CRV is a relative 
parameter that indicates how variable the GEBV of an 
individual is when transmitted to its gametes. The 
magnitude of the correlation showed that this parame-

Table 3. Mean squared prediction (MSE), intercept (a), and coefficient (b) of the linear regression between the variance of gametic diversity 
for QTL and its estimates using a high-density SNP panel and sequence data by genomic models1

Trait

  Model2

High-density SNP

 

Sequence data

h2   QTL (no.) MSE a b MSE a b

0.1 20 GBLUP 0.0014 −0.0010 0.27 0.0022 −0.00033 0.20
BLASSO 8e-05 0.0027 1.20 8e-05 0.00185 1.26

200 GBLUP 0.0010 0.0058 0.23 0.0016 0.00637 0.18
BLASSO 0.0001 0.0074 1.01 0.0001 0.00681 1.03

0.3 20 GBLUP 0.0017 −0.00697 0.43 0.0028 −0.00625 0.35
BLASSO 0.0002 0.00282 1.46 0.0002 0.00247 1.41

200 GBLUP 0.0021 0.00979 0.40 0.0035 0.01123 0.33
BLASSO 0.0004 0.00945 1.14 0.0004 0.00950 1.13

0.5 20 GBLUP 0.0019 −0.00294 0.26 0.0030 −0.002039 0.19
BLASSO 0.0001 0.00188 1.41 0.0001 0.001866 1.37

200 GBLUP 0.0022 0.00560 0.62 0.0033 0.006547 0.56
BLASSO 0.0008 0.00851 1.10 0.0007 0.008799 1.09

1Values in bold represent the least-biased estimates.
2GBLUP = genomic BLUP; BLASSO = Bayesian LASSO.
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ter can be predicted, although the decreased accuracy 
with an increased number of markers indicated some 
difficulty for prediction in these cases.

These results may also be explained by a partition of 
CRV (Appendix A3). Similar results were observed for 
σgamete

2  and CRV in the 10th generation using the mark-
er effects estimated from the 9th generation. It means 
that predictions for these parameters can follow the 
same design in genomic selection programs to calculate 
GEBV, and σgamete

2  can be estimated using the training 
data from previous generations (Habier et al., 2007).

Application of Gametic Variance  
in Selection Programs

The percentage of additional genetic gain (ΔG) per 
generation in selection by using RPTA compared with 
PTA (ΔGRPTA-PTA/ΔGPTA), as well as the accumulated 
gain for a period of 10 generations, was used to assess 
the suitability of the new selection index (Figure 1 and 
Supplemental Figure S1; https:​/​/​doi​.org/​10​.3168/​jds​
.2018​-15971). The accumulated genetic gains obtained 
with RPTA were higher than those obtained with PTA 
when the number of QTL increased. No significant in-
crease was observed for a small number of QTL (20). 
However, in scenarios with more QTL, the genetic gain 
was close to expected (Appendix A2), with ΔG ranging 
from 5 to 16% in 10 generations, indicating an advan-
tage of RPTA for traits with large numbers of QTL. 
These results were in agreement with those reported 
by Daetwyler et al. (2015) using a genomic optimal 
haploid value (OHV) for selection. In addition, we 
noted that RPTA tended to increase the frequency of 
the best alleles in the population more quickly than 
PTA, which resulted in a permanent effect over gen-
erations (Supplemental Figure S1; https:​/​/​doi​.org/​10​
.3168/​jds​.2018​-15971). This trend was also observed 
by Daetwyler et al. (2015) using OHV, which verified 
the increase of genetic gain and a smaller reduction of 
genetic diversity compared with genomic selection. Ac-
cording to those authors, the selection of the individuals 
with the highest breeding values can lead to the loss of 
rare favorable alleles in the population, but individuals 
that carry these alleles may be more favorable in the 
long term, even though their GEBV can be below the 
truncation point. The importance of the selection for 
favorable minor alleles was also reported by Sun and 
VanRaden (2014) using a weighted genomic selection 
(WGS) by the favorable MAF.

The percentages of additional genetic gain per gen-
eration using RPTA were generally positive across sce-
narios (Figure 1 and Supplemental Figure S1; https:​/​/​
doi​.org/​10​.3168/​jds​.2018​-15971). Some were negative in 

scenarios with a few QTL but they were all positive and 
relatively large for scenarios with more QTL, between 
3 and 8%. These results highlight the advantage of us-
ing RPTA compared with conventional PTA. Although 
for all scenarios we observed that the first generation 
under the RPTA selection obtained less genetic gain 
than PTA, a large increase was obtained in subsequent 
generations. Daetwyler et al. (2015) reported similar 
trends in the first few generations of selection using 
OHV. Thus, the selection by RPTA initially provided 
an increase of variability, with a subsequent reduction 
by selection of the best alleles in the following genera-
tions.

The effect of h2 was not evident across the sce-
narios, and in general, the best RPTA performance 
was observed for scenarios with moderate heritability. 
Lehermeier et al. (2017) compared UC and OHV in 2 
scenarios with low and high h2 and observed greater 
gain in the latter scenario. However, as the true values 
(PTA and RPTA) were used for selection in this study, 
heritability would not affect the estimation but the 
magnitude of genetic variances.

When the number of progeny per dam increased, the 
genetic gain also increased for both PTA and RPTA, 
but the RPTA achieved a faster, and therefore greater, 
genetic gain (Figure 1 and Supplemental Figure S1; 
https:​/​/​doi​.org/​10​.3168/​jds​.2018​-15971). These results 
agreed with those reported by Daetwyler et al. (2015), 
who observed a rapid increase in genetic gain using 
OHV when the number of progeny increased from 10 
to 1,000. Lehermeier et al. (2017) also observed greater 
gains for higher selection intensities for UC and OHV. 
For the scenarios with a few QTL, there was no large 
gain by using RPTA when increasing selection intensity 
(Figure 1 and Supplemental Figure S1). For scenarios 
with many QTL, we observed a greater gain using 
RPTA in early generations than in scenarios with lower 
selection intensity, as predicted by the expected gain 
(Appendix A2). For traits with many QTL, higher val-
ues of if had better performance than those with lower 
intensities, although the trend was not observed for 
scenarios with a few QTL. It suggests that for scenarios 
with many QTL, the increase in selection intensity al-
lows the use of higher values for if.

One of the advantages of using RPTA is the choice of 
if for weighting σgamete

2  in the index (Figure 1 and Sup-
plemental Figure S1). Initially, integral values (without 
adjustment) for if were tested but gains were much 
smaller than those with traditional selection. The com-
ponent if  σ× gamete

2  from RPTA is stochastic, and high 
values for if can be risky when the number of progeny 
per individual is small. Lehermeier et al. (2017) used 
integral value of if to obtain UC; however, they simu-

https://doi.org/10.3168/jds.2018-15971
https://doi.org/10.3168/jds.2018-15971
https://doi.org/10.3168/jds.2018-15971
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lated plant crosses with large numbers of progeny (100) 
to realize the predicted variance in the offspring. The 
increase in if proved to be unsuitable for scenarios with 
few QTL, where lowest values should be prioritized for 
this type of trait. However, for scenarios with many 
QTL, large if values are desired, especially when selec-
tion intensity is high. Thus, the risk related to the 
number of progeny should be considered and standard-
ized equally for all individuals, preferably by increasing 
the minimum number of offspring. Lehermeier et al. 
(2017) obtained the selection intensity value in UC 
from the proportion of individuals selected within plant 
homogeneous crosses, which is equivalent to using dam 

selection intensity in animal breeding. Empirically, to 
find the optimal value for if, we can adjust the real 
value of the future selection intensity of dams (have the 
least number of offspring) by 1−( )PV , so the adjusted 

intensity value is i PV if f
* ,= −( )×1  where the individual 

percentage of variation (PV) is obtained from equation 
[A3.1] in Appendix A3. Given the number of progeny 
per dam (n) and the average CRV of the population, we 

have PV
Z

n
=
( )×−1 2α/

,
CRV

where Z is the correspond-

ing percentile value from a standard normal distribu-
tion.

Figure 1. Difference in percentage of genetic gain per generation between true PTA (ΔGPTA) and relative PTA (ΔGRPTA) with different 
adjusted future selection intensity values (if = 0.5, 0.8, and 1) and heritabilities (h2 = 0.1, 0.3, and 0.5) for 10 generations and 20 QTL with real 
section intensity around 0.996 for females and 1.755 for males (5 offspring per dam).
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In this section, we verified the feasibility of using 
σgamete

2  in selection programs to explore the whole addi-
tive genetic potential of individuals. The proposed in-
dex (RPTA) is easy to obtain and apply. As the vari-
ance of GEBV of future progeny is σ σgameteSire gameteDam

2 2+ , 
the UC for a given mating can be easily obtained as 
RPTAsire + RPTAdam. With greater genetic gains and 
better preservation of genetic diversity (Supplemental 
Figures S2 and S3; https:​/​/​doi​.org/​10​.3168/​jds​.2018​
-15971), the RPTA can accelerate genetic selection 
compared with other indices that also preserve diversi-

ty, such as the OHV, WGS, optimal population value, 
and genotype building (Goiffon et al., 2017). This 
statement is supported by the literature, because first 
Goiffon et al. (2017) showed a better performance of 
OHV than cited indices, and then Lehermeier et al. 
(2017) introduced the UC (similar to RPTA, but used 
for mating) and demonstrated its superiority to OHP 
within the crosses when different selection intensities 
are applied. Thus, RPTA can be a better option to 
maximize genetic gain per generation and the profit-
ability of a breeding program. In contrast, although 

Figure 2. Distribution of variance of gametic diversity σgamete
2( ) for milk, fat, and protein yields and fat and protein percentages by chromo-

some and sex in US Holstein cattle. Bars indicate averages and whiskers represent standard deviations.
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RPTA represents an optimal equilibrium between the 
expected value (PTA) and the variability, the weighted 
value for σgamete  2 if

*( ) can be modified to preserve diver-
sity and accelerate genetic progress. Another point to 
consider is that although RPTA and WGS have a simi-
lar purpose, the expected component of RPTA (PTA) 
can still be adjusted for a greater emphasis in the selec-
tion of favorable minor alleles if desired, as suggested 
by Sun and VanRaden (2014). Besides, although the 
genetic gain obtained using RPTA with random mating 
has been impressive for traits with many QTL, greater 
gains can be obtained with this criterion using a sophis-
ticated mating design (Allaire, 1980; Sonesson and 
Meuwissen, 2000; Lehermeier et al., 2017).

Estimation and Application of Gametic  
Variance in Real Data

The suitability of applying σgamete
2  in livestock breed-

ing programs was evaluated using 2 dairy populations, 
Holstein and Jersey, for 5 milk production traits. Be-
cause chromosomes are independent genome segments, 
σgamete

2  was calculated separately for each chromosome 
(Figure 2 and Supplemental Figure S4; https:​/​/​doi​.org/​
10​.3168/​jds​.2018​-15971). The average, standard devia-
tion, and amplitude of the estimated σgamete

2  were largest 
on BTA14 for all production traits. This was expected 
because BTA14 contains the largest QTL for milk pro-
duction, DGAT1 (Grisart et al., 2002; Bouwman et al., 
2011, 2018). However, the 5 traits had different distri-
butions of σgamete

2  among chromosomes. The σgamete
2  for 

PY was more evenly distributed, but for other traits, 
especially for F%, σgamete

2  showed a skewed distribution 
with major mass concentrated on BTA14. This is due 
to the greater effect of DGAT1 on milk fat than on milk 
protein (Thaller et al., 2003). Similar results were ob-
served in both Holstein and Jersey cattle. Although the 
recombination rate is different between males and fe-
males in cattle (Shen et al., 2018), little difference was 
observed for σgamete

2  between the 2 sexes (Figure 2 and 
Supplemental Figure S4).

The distribution of σgamete
2  varied in the 2 cattle popu-

lations (Figure 3 and Supplemental Figure S5; https:​/​/​
doi​.org/​10​.3168/​jds​.2018​-15971). The results showed a 
distribution close to the typical Gaussian curve for PY, 
but non-Gaussian curves for other traits. For F%, the 
distribution had 2 peaks. Similar results were observed 
for Holstein and Jersey, but the effect of BTA14 was 
more pronounced in Jersey, possibly because this breed 
has a higher milk fat percentage, as well as different 
composition of fatty acid content in milk (White et al., 
2001). Segelke et al. (2014), studying genetic variation 

Figure 3. Normal quantile-quantile (Q-Q) and kernel density plots 
of variance of gametic diversity distribution for milk, fat, and protein 
yields as well as fat and protein percentages in US Holstein cattle.
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in Holstein, observed a similar distribution for PY and 
FY.

The predictability of the offspring variance of dairy 
traits for bulls was assessed using a Pearson correlation 
between the variance of progeny breeding values and 
the σgamete

2  of bulls estimated by genomic models (Table 
4). This correlation increased with an increased number 
of offspring. The moderate to high correlation indicated 
the feasibility of predictions. These results were consis-
tent with Segelke et al. (2014), who reported the same 
trend with slightly higher values for the correlation 
with standard deviations of gamete breeding value 
(SDGBV) in Holstein. Although the variance of prog-
eny GEBV also contains a dam effect, our results using 
only sires validated the σgamete

2  estimated by genomic 
models as a predictor of the variance of GEBV for fu-
ture offspring. In general, traits with larger coefficient 
of variation, such as PY, MY, and FY, had a lower 
correlation, whereas traits with lower coefficient of 
variation, F%, and P%, exhibited larger correlations. 
The difference in variability also explains the second 
trend, where traits with a biased distribution of σgamete

2  
per chromosome had a better prediction than those 
showing even distributions. Segelke et al. (2014) also 
reported a larger correlation for FY than PY using 
SDGBV.

The correlations of σgamete
2  between traits were all 

positive, ranging from moderate to high magnitude, 
although most of the estimated correlations between 

production and content percentage traits were negative 
(Table 5). In general, many large correlations of σgamete

2  
were observed with MY, indicating that selection using 
gametic variation of MY can result in the preservation 
of variability in other production traits as well. The 
magnitude of correlation for FY and PY was similar to 
those studies using other measures of progeny variation 
by Segelke et al. (2014) and by Bonk et al. (2016).

Correlations of σgamete
2  with inbreeding coefficients, 

given as the diagonal of the Wright (1931) and genomic 
(VanRaden, 2008) relationship matrices, were negative 
but close to zero across dairy traits, with the highest 
correlation observed for PY and the lowest for F% 
(Table 5). The results observed for PY and FY were 
similar to those reported by Segelke et al. (2014) using 
SDGBV. The negative correlation was expected be-
cause the greater the inbreeding, the lower the hetero-
zygosity of the loci and consequently the lower the 
σgamete

2 . However, because σgamete
2  depends on the hetero-

zygosity of those genomic regions with QTL effects, the 
low correlations were not unexpected, because inbreed-
ing coefficients are global indicators of whole-genome 
heterozygosity.

CONCLUSIONS

This study verified the feasibility of estimating and 
applying variance of gametic diversity in livestock 
breeding programs. The σgamete

2  can be accurately ob-

Table 4. Pearson correlations (r) of σgamete
2  for milk, protein, and fat yields (MY, PY, and FY, respectively)  

and protein and fat percentages (P% and F%, respectively) with variances of progeny breeding values for  
different minimum numbers of offspring per sire1

Breed and minimum  
no. of offspring

Sires  
(no.) rMY rPY rFY rP% rF%

Jersey
  10 1,109 0.24 0.16 0.20 0.30 0.58
  50 451 0.40 0.33 0.46 0.50 0.75
  100 311 0.53 0.34 0.47 0.60 0.85
  200 183 0.64 0.31 0.49 0.77 0.95
  300 128 0.68 0.40 0.55 0.86 0.96
  400 97 0.66 0.43 0.61 0.90 0.97
  500 77 0.66 0.51 0.62 0.90 0.97
  600 66 0.69 0.54 0.66 0.92 0.97
Holstein 
  10 6,797 0.29 0.16 0.32 0.39 0.57
  50 2,753 0.55 0.24 0.60 0.69 0.85
  100 1,887 0.66 0.27 0.67 0.78 0.91
  200 1,241 0.71 0.23 0.70 0.83 0.93
  300 903 0.75 0.26 0.74 0.85 0.94
  400 706 0.77 0.29 0.77 0.87 0.95
  500 569 0.78 0.30 0.78 0.89 0.96
  600 478 0.78 0.30 0.77 0.89 0.95
1 σgamete

2  = variance of gametic diversity.
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tained from genomic models. To improve the estimation 
of σgamete

2 , covariance between markers needs to be con-
sidered. σgamete

2  can be especially useful for traits with 
many QTL using a newly developed selection index, 
RPTA. Additionally, the confidence level of this index 
can be adjusted by the number of future progeny, mak-
ing it suitable for dairy cattle breeding. For Holstein 
and Jersey cattle, DGAT1 had a large effect on the 
prediction of σgamete

2  across all production traits. In-
breeding coefficients had a small impact on gametic 
variability of dairy traits, with a greater effect on traits 
less affected by DGAT1. Collectively, σgamete

2  can be eas-
ily obtained and applied to existing genomic selection 
programs to improve genetic progress and control ge-
netic diversity.
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APPENDIX A1

Variance of Gametic Diversity in Traditional  
BLUP Models

The additive genetic value of an individual (u) can 
be expressed as the sum of half the value of sire (S), 
half of the dam (D), and a Mendelian error (m). The 
components transmitted by the sire (TS) and dam (TD) 
can be represented as

	 T
u

mS
S

S=







+2

	

	 and T
u

mD
D

D=







+2

,	 [A1.1]

where the variance of m, the Mendelian sample vari-
ance, var(m), is obtained as in Mrode (2005):

	 var m
F u( ) =
−( )1

4

2σ
.	 [A1.2]

Here, the var(m) of an EBV is obtained from the paren-
tal inbreeding coefficients (F) (Dempfle, 1990). From 
the genomics point of view, var(m) can be obtained 
considering locus by locus of the parent. In the tradi-
tional BLUP model, the diagonal elements of the rela-
tionship matrix are obtained by doubling the expected 
variance if this diploid individual mated with itself. 
This variance can be divided into 2 parts for the prog-
eny having the same alleles a ai j=( ) for a given locus or 
different alleles a ai j≠( ). Considering that a homozy-
gous locus has probability Pr a ai j=( ) = 1 and a hetero-
zygous locus Pr .a ai j=( ) = 0 5 and Pr . ,a ai j≠( ) = 0 5  
the total variance of a hypothetical mating will be a 
function of the number of homozygous loci (NHom) 
and the number of heterozygous loci (NHet):

	 2
2

2

2× +( ) =
× +( )

∑
var T T
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p q
S D
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i i

uσ .	 [A1.3]

Separating by components related to equality a ai j=( ) 
and to the difference a ai j≠( ) among the loci of the 
future gametes, we have
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Knowing that σ σu a
i

N

i ip q
2 22=∑ , where σa

2 is the variance 

of the effect of allelic substitution considered homoge-
neous for all loci in BLUP, var(m) is

	 var m F NHet a a

p q
u

i j

i

N
i i

u( ) = −
=

× ≠( )
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1
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0 25
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2

2 2σ σ.
Pr

	

	 var m NHet a( ) = ×0 25 2. .σ 	

When homogeneous variance is assumed for the allelic 
substitution effects across all loci that are inherited 
independently:

	 var m( ) = σgamete
2 .	 [A1.4]

APPENDIX A2

Expected Genetic Gain Using the Relative PTA

The RPTAi (relative PTA) refers to the average of 
the genetic value relative to the group of gametes that 
will be selected in the future. Thus, from the key equa-
tion of genetic change, the future genetic gain consider-
ing the selection of animals can be estimated. We will 
differentiate between the 2 selection intensities, ir (re-
cent) and if (future), although they are identical in 
most cases. The relative selection differential (SR) for 
the next generation is given by SR E selected=  >RBVi , 
where the RBV PTA ii i i f= × + ×( )2 σ . The variance of 
RBV PTA igamete f= × + ×( )2 σ  can be obtained as

	
4

E RBV E RBV

i E Eu f gamete gamete

− ( )
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
{ } =

+ × × ( )− ( )

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2 2 2 2
σ σ σ





.
	 [A2.1]
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The relative genetic gain (ΔGR) can then be obtained 
as

GR r i var i rr u gamete f g= × × + × ( )× ×σ2 2 2 24 σ ,

� [A2.2]

where σu
2 is the additive genetic variance, var gameteσ2( ) is 

the variance of gametic diversity, and r and rg
2 are, re-

spectively, accuracies of the genetic evaluation and the 
prediction of the σgamete

2 .
The increase in rate of genetic gain from using the 

relative criterion in place of the traditional criterion, 
disregarding the accuracy of σgamete

2 , will then be

	 ∆ ∆GR G iu f gamete u− = + ( ) −σ σ σ2 2 2 24 var .	[A2.3]

The expected genetic gain can be stratified using differ-
ent if for sex, where the term 4 2 2if gametevar σ( ) is expanded 
to explicitly express male (S) and female (D) contribu-
tions:

	
i ivar var

i i cov

fS fDgameteS gameteD

fS fD gameteS

2 22 2

2

σ σ

σ

( )+ ( )
+ × σσgameteD( ).

	 [A2.4]

APPENDIX A3

Sample Size and Coefficient of Relative Variation

Given σgamete
2 , it is useful to find the optimal number 

of progeny for an individual to realize the expected 
variability in its offspring. This is similar to the optimal 
number of daughters needed for a reliable conventional 
progeny test. It is difficult to obtain such an estimate 
using a general model, but estimating a percentage 
variability in real data is possible. Van Belle and Mar-
tin (1993) proposed an approach to obtain the number 
of samples from the coefficient of variation considering 
the margin of error as a percentage of variation. Be-

cause the gametic variation is a random component 
proportional to the additive genetic variance, a modifi-
cation of Van Belle and Martin (1993) by substituting 
the coefficient of variation for the relative variation 
(CRV) of the value transmitted to the progeny can be 
used to estimate the required sample size (n); CRV 
(equation [4]) considers the value related to the average 
transmission of additive variance of an individual i to 

its progeny E ui0 5 2.( )













 as 0 5 2 2 2. .

i

NHom

i∑ +α σgamete

Thus, we can use the CRV to obtain the sample size 
according to levels of percentage variation admitted 
between an estimated value from the sample and the 
expected value (Van Belle and Martin 1993). The per-
centage of variation in a sample relative to the expected 

value (PV) in 0 5 2. E ui

  can be represented as

. .

.
,.PV

T T
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i

0 5
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2

0 5 0 5

0 5
=

−


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


 where T1 represents the change 

(alternative) in the mean of PTA that may differ from 
the expected transmitted value (T). The smaller the 
change desired in PTA, the greater the number of prog-
eny will be required and, consequently, greater vari-
ability will be observed among these progenies. The 
number of progeny (n) to be used from the percentage 
of variation PV ui0 5.( ) as a margin of error can be repre-
sented as

	 n
Z CRV

PV

i

ui

=
( ) ×( )

( )
−1 2

2 2

0 5
2

α/

.

,	 [A3.1]

where Z1 2−α/  is the critical value associated with the 
degree of confidence. For example, at significance level 
of 95% if we accept a percentage change in the mean of 
only 10% PV ui0 5 0 1. .=( ) of the PTA, we have 

n CRVi= ( )400 2 , where the homozygous animals will 
have a lower CRV than the heterozygous animals, re-
quiring a smaller number of offspring for progeny test-
ing.
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