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ABSTRACT

Advances in the molecular area of selection have 
expanded knowledge of the genetic architecture of com-
plex traits through genome-wide association studies 
(GWAS). Several GWAS have been performed so far, 
but confirming these results is not always possible due 
to several factors, including environmental conditions. 
Thus, our objective was to identify genomic regions 
associated with traditional milk production traits, in-
cluding milk yield, somatic cell score, fat, protein and 
lactose percentages, and fatty acid composition in a 
Holstein cattle population producing under tropical 
conditions. For this, 75,228 phenotypic records from 
5,981 cows and genotypic data of 56,256 SNP from 
1,067 cows were used in a weighted single-step GWAS. 
A total of 46 windows of 10 SNP explaining more 
than 1% of the genetic variance across 10 Bos taurus 
autosomes (BTA) harbored well-known and novel 
genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 
(BTA14), and PAEP (BTA11) genes were confirmed 
within some of the regions identified in our study. Po-
tential novel genes involved in tissue damage and repair 
of the mammary gland (COL18A1), immune response 
(LTTC19), glucose homeostasis (SLC37A1), synthesis 
of unsaturated fatty acids (LTBP1), and sugar trans-
port (SLC37A1 and MFSD4A) were found for milk 
yield, somatic cell score, fat percentage, and fatty acid 
composition. Our findings may assist genomic selection 
by using these regions to design a customized SNP ar-
ray to improve milk production traits on farms with 
similar environmental conditions.
Key words: dairy cattle, genome-wide association 
study, milk composition

INTRODUCTION

Selection based on phenotype and pedigree informa-
tion has enabled great improvements in genetic merit 
in several livestock species. With the advances in the 
molecular area of selection, it is possible to obtain 
a wider knowledge about the genetic architecture of 
complex quantitative traits and use it as an additional 
information source in breeding programs. The progress 
in genome sequencing and high-throughput genotyping 
technologies has made feasible the identification of SNP 
associated with phenotypes of interest through genome-
wide association studies (GWAS).

In dairy cattle, GWAS have identified genetic vari-
ants associated with complex phenotypes, such as milk 
yield and quality traits (e.g., Bouwman et al., 2011, 
2012; Schopen et al., 2011; Meredith et al., 2013). How-
ever, despite the large number of GWAS conducted so 
far, the validation of SNP effects is not always possible. 
Confirming GWAS results in an independent popula-
tion is the most reliable way to validate associations 
previously found, as well as providing a clearer view 
about the genetic architecture underlying complex 
traits, as large genomic regions can be refined to a few 
candidate genes (Visscher, 2008; Raven et al., 2014). 
Factors such as breed, breeding goals, statistical meth-
od, linkage disequilibrium (LD) pattern, and definition 
of the traits can contribute to the variability of GWAS 
results, mainly in species and breeds widely studied 
(e.g., Holstein cattle).

Environmental conditions, such as season, nutrition, 
and management, are also variables that can modify 
gene expression of most of the traits of interest. Re-
cently, studies revealed that polymorphisms in diacylg-
lycerol O-acyltransferase 1 (DGAT1) and stearoyl-CoA 
desaturase 1 (SCD1) genes showed different effects on 
milk production traits and fatty acid (FA) composition 
according to the season and temperature (Duchemin 
et al., 2013; Komisarek and Kolenda, 2016). In addi-
tion, a joint GWAS of the Chinese and Danish Holstein 
populations showed potential genotype by environment 
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interaction for milk FA traits (Li et al., 2015). The 
influence of heat stress on milk yield and composition 
traits is well described in the review by Tao et al. (2018). 
Knowing that different GWAS results can be found ac-
cording to the environmental conditions will help us to 
make better selection decisions. Therefore, the aim of 
our study was to perform a GWAS to identify genomic 
regions affecting milk yield and composition, including 
FA profile, in a Holstein cattle population producing 
under tropical conditions.

MATERIALS AND METHODS

Phenotypic Data

We used 75,228 phenotypic records collected between 
May 2012 and December 2016 of 5,981 Holstein cows 
located on 4 Brazilian farms from first to sixth lacta-
tion in our study. A detailed description of the phe-
notypic quality control, environment, and production 
system in each farm can be seen in Petrini et al. (2016), 
and a summary of the phenotypic data is shown in 
Table 1. These cows were assigned to 355 contemporary 
groups (CG) and were daughters of 317 sires. The CG 
were formed by concatenating information from sea-
son and year of calving as well as farm and month of 
analysis. The pedigree included 10,491 animals. The 
traits studied were test-day milk yield (MY; kg/d), 
SCS (transformed according to Ali and Shook, 1980), 
fat percentage (FP), protein percentage (PP), lac-
tose percentage (LP), palmitic acid (C16:0), stearic 
acid (C18:0), oleic acid (C18:1), SFA, UFA, MUFA, 
and PUFA. The milk components were expressed as 
grams per 100 g of milk and measured by mid-infrared 
spectroscopy (Delta Instruments CombiScope Filter, 
Advanced Instruments Inc., Norwood, MA; Rodriguez 
et al., 2014). Comparing milk samples measured by 
mid-infrared spectroscopy and GC, with fatty acids 

expressed as grams per 100 g of milk fat, we observed a 
high association according to the Pearson correlations 
(0.6–0.9) and a slight discrepancy (94% of the samples 
were within the concordance range) measured by 
Bland-Altman test, which indicated that both methods 
show a similar pattern. Thus, the measurement method 
would not affect conclusions.

The SFA group included C4:0, C6:0, C8:0, C10:0, 
C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, 
C18:0, C19:0, C23:0, and C24:0; the MUFA group in-
cluded C14:1, C15:1, C16:1, C17:1, C18:​1n​-9, C18:​1n​-9,  
C18:​1n​-7, C19:1, C22:​1n​-9, and C24:1; the PUFA group 
included C18:​2n​-6, C18:​3n​-3, cis-9,trans-11-CLA,  
C20:​3n​-3, C22:2, eicosapentaenoic acid, C20:5; and the 
MUFA plus PUFA composed the UFA group.

Genotypes

Hair root samples from 1,136 cows were collected 
for DNA extraction using the NucleoSpin Tissue Kit 
(Macherey-Nagel GmbH & Co. KG, Düren, Germany). 
Genotypes from 747 cows were obtained with the Illu-
mina Bovine LD BeadChip (Illumina, San Diego, CA), 
containing 6,909 SNP, and the remaining 389 cows with 
the GeneSeek Genomic Profiler Bovine 50k (Neogen 
Corporation, Lincoln, NE), containing 47,843 SNP. All 
genotypes were imputed to 60,671 SNP using findhap.
f90 (VanRaden et al., 2013). The reference population 
was composed of 1,584,539 females and 237,570 males, 
all Holstein, genotyped with a variety of chips manu-
factured largely by Illumina and provided by Illumina, 
GeneSeek (Neogen Agrigenomics, Lexington, KY) and 
Zoetis (Zoetis, Parsippany, NJ). The individual chips 
contributed from 2,710 to 56,643 of the 60,671 SNP 
used to form the haplotype library used to impute the 
genotypes. Markers located in sex chromosomes (n = 
1,681), monomorphic (n = 70), with proportion of miss-
ing genotypes >10% (n = 1,160) and with minor allele 

Table 1. Summary of the data set used in this study

Trait name   Trait abbreviation N1 Mean (SD) Minimum Maximum Heritability2

Milk yield (kg/d) MY 53,592 35.41 (9.56) 6.75 63.90 0.13
Somatic cell score SCS 57,279 2.79 (2.17) −3.64 9.29 0.12
Fat percentage FP 56,377 3.43 (0.69) 1.37 5.49 0.19
Protein percentage PP 56,377 3.07 (0.29) 2.20 3.94 0.35
Lactose percentage LP 56,377 4.65 (0.20) 4.04 5.26 0.31
Palmitic acid (%) C16:0 32,379 0.84 (0.20) 0.24 1.45 0.26
Stearic acid (%) C18:0 32,378 0.61 (0.14) 0.20 1.01 0.14
Oleic acid (%) C18:1 32,372 0.65 (0.19) 0.10 1.21 0.07
Saturated fatty acids (%) SFA 32,379 2.23 (0.46) 0.86 3.59 0.25
Unsaturated fatty acids (%) UFA 32,379 1.01 (0.26) 0.24 1.77 0.08
Monounsaturated fatty acids (%) MUFA 32,379 0.85 (0.22) 0.19 1.52 0.07
Polyunsaturated fatty acids (%) PUFA 32,369 0.15 (0.04) 0.03 0.28 0.11
1N = number of observations.
2Obtained using combined pedigree-genomic relationship matrix (Petrini et al., 2016).
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frequency <0.02 (n = 1,504), and samples with call rate 
<90% (n = 69) were excluded. After this, 1,067 cows 
and 56,256 SNP remained for association analysis.

GWAS

The association analysis was performed using the 
weighted single-step genomic BLUP (WssGBLUP) 
method (Wang et al., 2012). The WssGBLUP allows the 
use of all available phenotypic, genotypic, and pedigree 
information and does not require adjusted measures as 
response variables. Additionally, using different weights 
for SNP also mimics the polygenic nature of the studied 
traits by taking the presence of major genes into ac-
count. The fitted model was

	 y = Xβ + Za + Sc + e,	

where y is the vector of phenotypic records; β is the 
vector of fixed effects including CG, lactation order, 
and DIM (cubic regression); a is the vector of random 
additive genetic effects; c is the vector of random per-
manent environmental effects; e is the vector of random 
residual effects; and X, Z, and S are the incidence 
matrices relating phenotypic records to fixed, random 
animal, and permanent environmental effects, respec-
tively. We assumed that a H~ , ,N a0 2σ( )  c I~ , ,N c0 2σ( )  
and e I~ , ,N e0 2σ( )  where σa

2, σc
2, and σe

2 are the additive 
genetic, permanent environmental, and residual vari-
ances, respectively; I is an identity matrix; and H is the 
matrix that combines pedigree and genomic informa-
tion (Aguilar et al., 2010). Its inverse is given by
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where A−1 is the inverse of the pedigree relationship 
matrix, Gw

−1 is the inverse of the genomic relationship 
matrix, and A22

1−  is the inverse of the pedigree relation-
ship matrix for genotyped animals only. To ensure full 
rank, the Gw

−1 matrix was created as Gw = αG + βA22, 
where G was constructed as described in VanRaden 
(2008) and using the default parameterization in the 
preGSf90 (α = 0.95 and β = 0.05). The WssGBLUP 
was performed using BLUPF90 family programs (Misz-
tal et al., 2002). The SNP effects (û) were calculated 
iteratively following scenario S2 as described by Wang 
et al. (2012):

	 û = DZ′[ZDZ′]−1âg,	

where D is the diagonal matrix of weights for variances 
of SNP, Z is the matrix that relates the genotypes to 
each locus, and âg is the genomic EBV of genotyped 
animals. The iterative process was repeated 2 times. In 
the first iteration, the same weight (1) for all SNP was 
assumed (i.e., D = I), and in the second the weight for 
each SNP was obtained as

	 d u p pi i i i= −( )ˆ ,22 1  	

where d is the diagonal elements of the D matrix, i is 
the ith SNP, and pi is the frequency of the second allele 
of the ith SNP.

The genetic variance explained by each 10-SNP win-
dow (n = 5,640) was calculated based on the SNP effect 
(ûi) and allele frequencies (pi and qi) of 10 consecutive 
markers and then divided by the total genetic variance 
explained by all SNP to convert to a proportion. The 
concept of grouping SNP into windows was adopted as 
a way to better capture the effect of a QTL instead of a 
single SNP (Habier et al., 2011). The 10-SNP windows 
that explained more than 1% of the genetic variance 
were considered promising regions and used to identify 
potential candidate genes by using the National Center 
for Biotechnology Information (NCBI) database and 
Ensembl Genome Browser (http:​/​/​www​.ensembl​.org/​
index​.html) through the biomaRt R package (http:​/​
/​www​.bioconductor​.org; Ensembl release 90). The 
threshold of 1% was chosen to identify the most im-
portant windows and to use the level used in other 
studies (e.g., Gonzalez-Pena et al., 2016; Zhu et al., 
2017; Marques et al., 2018; Pereira et al., 2018). The 
Manhattan plots were created using qqman package 
(Turner, 2014).

RESULTS AND DISCUSSION

The Manhattan plots of the proportion of genetic 
variance explained by 10-SNP windows for each trait 
are shown in Figure 1. The peak on BTA14 explained 
the largest proportion of variance for FP and most of 
the FA traits. Additional regions explaining large pro-
portions of the variance were found on BTA6 (37.86 to 
40.62 Mbp) for LP and BTA11 (103.04 to 106.43 Mbp) 
for PUFA. The 10-SNP windows that explained more 
than 1% of the genetic variance are listed in Table 2. A 
total of 46 windows distributed over 10 chromosomes 
(BTA1, 5, 6, 8, 9, 11, 12, 14, 16, and 19) explained more 
than 1% of the genetic variance. Taken together, these 
windows explained from 1.20 to 18.60% of the genetic 
variance across all traits. The results will be further 
discussed by chromosome.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://www.bioconductor.org
http://www.bioconductor.org
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Figure 1. Manhattan plot of the proportion of genetic variance explained by 10-SNP windows for each trait. The dotted black line indicates 
the adopted threshold (1%).
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Figure 1 (Continued). Manhattan plot of the proportion of genetic variance explained by 10-SNP windows for each trait. The dotted black 
line indicates the adopted threshold (1%).
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On BTA1, a window from 144.38 to 145.13 Mbp was 
associated simultaneously with MY and SCS, where 
the solute carrier family 37 member 1 (SLC37A1) and 
phosphodiesterase 9A (PDE9A) genes are located. The 
SLC37A1 gene encodes a glucose-6-phosphate trans-
porter involved in the glucose blood homeostasis (Pan 
et al., 2011) and is highly expressed in the mammary 
gland (Kemper et al., 2015; Raven et al., 2016). Previ-
ously, SLC37A1 was associated with MY, FP, and PP 
(Kemper et al., 2016; Raven et al., 2016; Pausch et al., 
2017), supporting our results for MY, and with other 
milk components such as αS1-CN and α-LA (Sanchez 
et al., 2017), phosphorus concentration (Buitenhuis et 
al., 2015), and FA composition (Olsen et al., 2017). 
The PDE9A gene is a cGMP-specific phosphodiesterase 
also highly expressed in mammary gland and previ-
ously associated with milk production traits (Yang et 
al., 2015).

Furthermore, on BTA1 an additional window was 
associated with SCS at about 147 Mbp. The collagen 
type XVIII α 1 chain (COL18A1) gene is located less 
than 0.10 Mbp downstream from this window and was 

considered the most likely candidate. Collagen genes 
are among those differentially expressed in mammary 
gland in response to mastitis, highlighting their role in 
tissue damage and repair (Huang et al., 2014; Wang et 
al., 2016).

Two windows on BTA5 were found, the first at about 
86 Mbp for MY and the second from 93.66 to 94.10 
Mbp for FP and SFA. No potential candidate gene was 
identified in the first window; however, SNP previously 
associated with milk, protein, and fat production were 
found in this region (Nayeri et al., 2016). The second 
region harbors the microsomal glutathione S-transferase 
1 (MGST1) gene, indicated as the most likely causal 
mutation despite its unclear role in regulating milk 
composition (Littlejohn et al., 2016). The MGST1 gene 
encodes a protein that protects against oxidative stress 
and participates in glutathione metabolism. The effect 
of MGST1 on FP and other milk composition traits has 
been reported in several studies (e.g., Jiang et al., 2010; 
Littlejohn et al., 2016; Raven et al., 2016).

A peak formed by 5 contiguous windows from 37.86 
to 40.62 Mbp was associated with LP on BTA6. The 

Table 2. The 10-SNP windows that explained more than 1% of the genetic variance for milk yield and composition traits

Window1

Trait2

  PCG3MY SCS FP PP LP C16:0 C18:0 C18:1 SFA UFA MUFA PUFA

1_144.38:145.12 2.49 1.37                     SLC37A1, 
PDE9A

1_147.12:147:38   1.10                     COL18A1
5_86.24:86.50 1.11                       —
5_93.66:94.10     1.13           1.12       MGST1
6_37.86:38.13         5.11               ABCG2
6_38.13:38.30         1.69               ABCG2
6_38.62:38.93         2.55               ABCG2
6_39.03:39.34         1.07               ABCG2
6_40.32:40.62         1.55               ABCG2
8_16.91:17.46   1.15                     LRRC19
9_80.88:81.32     1.21                   —
11_15.75:16.02                     1.03   LTBP1
11_103.04:103.28                       1.75 PAEP
11_103.28:103.47                       7.93 PAEP
11_106.09:106.43                       1.29 PAEP
12_52.49:52.82                       1.69 —
14_1.18:1.65     4.49     4.24 1.68 2.03 4.25 1.55 1.57   DGAT1
14_1.67:2.00     8.72     9.18 3.63 2.16 8.96 2.28 2.27   DGAT1
14_2.05:2.27     1.97     2.46     2.39       DGAT1
14_3.07:3.43     1.08     1.07 1.31 1.03 1.17       DGAT1
14_3.46:3.70           1.28             DGAT1
14_61.44:62.08 1.27                       —
16_3.07:3.42             1.00           MFSD4A, 

SLC35A3
16_10.30:10.74             1.56           —
16_80.95:81.18       1.20                 —
19_60.24:60.44             1.17           —
Sum 4.87 3.62 18.60 1.20 11.97 18.23 10.35 5.22 17.89 3.83 4.87 12.66  
1Represented by BTA and physical position (in Mbp) (BTA​​_Mbp:​Mbp).
2MY = milk yield; FP = fat percentage; PP = protein percentage; LP = lactose percentage; C16:0 = palmitic acid; C18:0 = stearic acid; C18:1 
= oleic acid.
3PCG = potential candidate genes.
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ATP-binding cassette subfamily G member 2 (ABCG2) 
gene is located in the beginning of this large region. 
The effects of ABCG2 on milk production traits have 
been well reported in the literature (e.g., Nayeri et al., 
2016; Lopdell et al., 2017; Pausch et al., 2017; Sanchez 
et al., 2017).

On BTA8, a window from 16.91 to 17.54 Mbp was 
associated with SCS. Among the genes found in this 
region, leucine-rich repeat containing 19 (LRRC19) 
was thought as the most likely candidate for belonging 
to the LRR family as well as toll-like receptors, which 
are involved in immune response. Evidence supporting 
the association between LRRC19 and immune response 
was previously observed in mice and humans (Chai et 
al., 2009; Su et al., 2014; Cao et al., 2016).

A window in the beginning (15.75–16.02 Mbp) and 
3 others at the end (103.04–106.43 Mbp) of BTA11 
were associated with MUFA and PUFA, respectively. 
The first region harbors the latent transforming growth 
factor β-binding protein 1 (LTBP1) gene, which regu-
lates transforming growth factor-β activity (Saharinen 
et al., 1999). In a human study, the expression of the 
stearoyl-CoA desaturase, an important enzyme in-
volved in the synthesis of UFA, shown to be controlled 
by transforming growth factor-β, supports our finding 
(Samuel et al., 2002). The second region on BTA11 
was formed by 2 subsequent windows from 103.04 to 
103.47 Mbp and another at about 106 Mbp. The pro-
gestogen-associated endometrial protein (PAEP) gene 
is located at 103.3 Mbp and is well known to affect 
protein composition (e.g., Raven et al., 2016; Sanchez 
et al., 2017); however, recent evidence suggesting its 
relation with FA was reported (Knutsen et al., 2018). 
Those authors reported that its relationship can be due 
to the potential transporter effect of PAEP by binding 
with SFA and UFA found in vitro (Le Maux et al., 
2014) or due to the high LD with glycosyltransferase 6 
domain containing 1 (GLT6D1). Other genes involved 
in lipid metabolism were found in this region, includ-
ing carboxyl ester lipase (CEL; 103 Mbp), globoside 
α-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1; 
103 Mbp), ATP-binding cassette subfamily A member 
2 (ABCA2; 106 Mbp), and prostaglandin D2 synthase 
(PTGDS; 106 Mbp).

The region that explained the highest proportions of 
genetic variance for FP and all FA, except PUFA, was 
observed on BTA14 (1.19 to 3.70 Mbp, comprising 5 win-
dows). The DGAT1 gene is located at 1.8 Mbp, which is 
well known to affect milk production and composition 
(e.g., Bovenhuis et al., 2015; 2016; Buitenhuis et al., 
2016; Sanchez et al., 2017). Partially, these results can 
be also assigned to genes neighboring DGAT1 that were 
previously related to milk production traits, such as 
CYHR1, VPS28, MROH1, OPLAH, and GPR20 (e.g., 

Jiang et al., 2014; Frąszczak and Szyda, 2016; Nayeri 
et al., 2016; Suchocki et al., 2016). Bennewitz et al. 
(2004) showed that DGAT1 is not exclusively respon-
sible for genetic variation related to milk production. 
A study that applied 3 different methods for sample 
stratification correction to evaluate the effects on dairy 
GWAS identified DGAT1 as the most significant for fat 
yield, and in one method the A5D786-CYHR1-VPS28-
DGAT1 region was identified as the most significant 
for MY (Ma et al., 2012); this suggests that there is 
an LD region affecting milk production traits. In our 
study, the window from 1.67 to 2.0 Mbp was the most 
important in this region for FP, C16:0, C18:0, C18:1, 
SFA, UFA, and MUFA, which highlights DGAT1 as the 
main candidate by capturing most of the signal from 
the QTL in this large region.

On BTA16, a window from 3.07 to 3.42 Mbp was 
associated with C18:0, where MFSD4A, SLC41A1, 
and SLC45A3, all solute carrier family members, are 
located. The MFSD4A gene was identified as a trans-
porter expressed in food regulatory brain areas in mice 
(Perland et al., 2017). Those authors also suggested 
MFSD4A can be a sugar transporter for sharing 20% 
of the AA with MFSD4B, a sodium-dependent sugar 
transporter (Horiba et al., 2003). The SLC41A1 gene 
is a magnesium transporter (Goytain and Quamme, 
2005), and SLC45A3 belong to the SLC45 family known 
to encode sugar transporters and play an important 
role in myelin maintenance by modulating glucose and 
lipid metabolism in oligodendrocytes (Shin et al., 2012; 
Vitavska and Wieczorek, 2013). These findings suggest 
that MFSD4A and SLC45A3, both sugar transporters, 
can be good candidates for C18:0 regulating loci, as 
sugar may be used for the synthesis of FA.

Novel regions without potential candidate genes were 
found on BTA9 (80.88–81.32 Mbp) for FP, BTA12 
(52.49–52.82 Mbp) for PUFA, BTA14 (61.44–62.08 
Mbp) for MY, and BTA16 (10.30–10.74 Mbp) and 
BTA19 (60.18–60.32 Mbp) for C18:0. In some of these 
regions, QTL were previously associated with milk pro-
duction and composition traits, including FA (Bouw-
man et al., 2011, 2012; Meredith et al., 2012). For PP, 
only 1 window explained more than 1% of the genetic 
variance (BTA16, 80.95–81.18 Mbp), but no promising 
gene was identified.

The regions shared between FP and FA (BTA5 and 
14) represent the genetic correlations among these traits. 
If 2 traits are positively and highly correlated with each 
other, it is expected that the same genes affect both. 
Fat percentage had more windows in common with the 
groups of SFA (C16:0, C18:0, and SFA) than the group 
of UFA (C18:1, UFA, MUFA, and PUFA). These find-
ings are supported by the higher genetic correlation 
estimates found between FP and SFA compared with 
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UFA (Bastin et al., 2011; Penasa et al., 2015; Petrini 
et al., 2016).

In general, we identified regions previously reported 
and novel, even using data from a Holstein population 
raised in a tropical condition. Partially, these known 
regions may have been identified by the intense use of 
AI, facilitating the dissemination of genetic material 
from influential bulls, mainly from United States and 
Canada, and making our population genetically closer 
to others previously studied. This suggests that major 
genomic regions for milk traits can be better captured 
than regions with minor effects, regardless of the envi-
ronmental condition of the analyzed population.

Besides helping to reveal the genetics behind milk 
production traits, our findings can also be used to 
improve traits through genomic selection. The cost of 
high-density genotyping is still a limitation in Brazil; 
therefore, a low-density customized SNP array incorpo-
rating GWAS results may improve accuracy of genomic 
prediction, as previously reported (e.g., Zhang et al., 
2014; Song et al., 2018). The magnitude of the gain in 
accuracy will depend on the genetic architecture of the 
trait; for example, FP is known to be strongly deter-
mined by a major region, DGAT1, whereas SCS seems 
to be influenced by regions with small effects according 
to studies published to date. Therefore, the validation 
of the effects found in our study in independent popula-
tions is needed to determine their value in the selection 
process.

CONCLUSIONS

A genome-wide association study using data from 
a Brazilian Holstein cattle population revealed 46 ge-
nomic regions on 10 BTA associated with milk produc-
tion traits, including FA. Four of these regions harbor 
genes previously associated with milk production traits 
(MGST1, ABCG2, PAEP, and DGAT1). Genes involved 
in tissue damage and repair, immune response, glucose 
homeostasis, synthesis of UFA, and sugar transport are 
located in the novel regions. Besides helping to unravel 
the genetic mechanisms underlying milk production 
traits, our findings may also be useful to compose a 
custom SNP array as a cost-effective approach to im-
prove these traits through genomic selection.
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