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Symposium review: How to implement genomic selection*
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ABSTRACT

Genomic selection was adopted very quickly in the
10 yr after first implementation, and breeders continue
to find new uses for genomic testing. Breeding values
with higher reliability earlier in life are estimated by
combining DNA genotypes for many thousands of loci
using existing identification. pedigree, and phenotype
databases for millions of animals. Quality control for
both new and previous data is greatly improved by
comparing genomic and pedigree relationships to cor-
rect parent—progeny conflicts and discover many addi-
tional ancestors. Many quantitative trait loci and gene
tests have been added to previous assays that used only
evenly spaced, highly polymorphic markers. Imputation
now combines genotypes from many assays of differing
marker densities. Prediction models have gradually
advanced from normal or Bayesian distributions within
trait and breed to single-step. multitrait, or other more
complex models, such as multibreed models that may
be needed for crossbred prediction. Genomic selection
was initially applied to males to predict progeny per-
formance but is now widely applied to females or even
embryos to predict their own later performance. The
initial focus on additive merit has expanded to include
mating programs, genomic inbreeding, and recessive al-
leles. Many producers now use DNA testing to decide
which heifers should be inseminated with elite dairy,
beef, or sex-sorted semen, which should be embryo do-
nors or recipients, or which should be sold or kept for
breeding. Because some of these decisions are expensive
to delay, predictions are now provided weekly instead
of every few months. Predictions from international
genomic databases are often more accurate and cost-
effective than those from within-country databases that
were previously designed for progeny testing unless lo-

Received September 30, 2019.

Accepted January 3, 2020.

*Presented at the Joint ADSA/Interbull Session: Breeding and
Genetics: Ten Years of Genomic Selection at the ADSA Annual
Meeting, Cincinnati, Ohio, June 2019.

tCorresponding author: Paul.VanRaden@usda.gov

cal breeds, conditions, or traits differ greatly from the
larger database. Selection indexes include many new
traits, often with lower heritability or requiring large
initial investments to obtain phenotypes, which provide
further incentive to cooperate internationally. The ge-
nomic prediction methods developed for dairy cattle
are now applied widely to many animal, human, and
plant populations and could be applied to many more.
Key words: genomic prediction, genomic selection,
DNA testing, dairy cattle

INTRODUCTION

Genomic selection differs from pedigree or phenotypic
selection by directly inspecting DNA. Breeding values
with higher reliability earlier in life are estimated by
combining DNA genotypes for many thousands of loci
with existing databases of identification, pedigree, and
phenotypic information for millions of animals. Before
genotypes were available for many animals or mark-
ers, researchers began deriving statistical methods and
simulating prediction and selection processes (Nejati-
Javaremi et al., 1997; Meuwissen et al., 2001). A de-
cade ago, the task switched to validating that genomic
methods also work with real data (Mantysaari et al.,
2010) and convincing breeders that genomic predictions
are accurate (VanRaden et al., 2009). Breeders of many
livestock species now use genomic prediction when ge-
notyping costs are low, the extra information gained is
large, and benefits from extra progress exceed costs. A
series of articles in Animal Frontiers (Ibanez-Escriche
and Simianer, 2016) reviewed the status of genomic
selection within several populations, and Boichard et
al. (2015) reviewed many technologies used and em-
phasized sustainable breeding programs. Growth of ge-
nomic selection has been rapid, and many new features
continue to be added 10 yr after first implementation.

The first goal of this article is to review how genomic
selection has been implemented by dairy cattle breeders
and compare that with how it could have been imple-
mented. The second goal is to suggest how breeders of
other populations can successfully implement genomic
selection using knowledge gained during the last de-
cade.
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DEVELOPMENT OF GENOMIC SELECTION
Genomic History

After genetic inheritance rules were discovered
(Mendel, 1866) and rediscovered (Bateson, 1900),
genetic improvement programs for quantitative traits
continued to use only phenotypes and pedigrees for a
century and used few or no genotypes associated with
the phenotypes. Breeding values in earlier decades were
estimated using only an animal’s own records and re-
cords of its closest relatives and eventually all relatives.
In the last decade, genomic relationships were included
in addition to pedigree relationships. This allows much
more precise tracking of actual DNA inheritance. but
the prediction methods still use mainly genetic markers
because few of the causative variants are known.

Genomic selection was initially applied to males to
predict progeny performance but now is widely ap-
plied to young females or even embryos to predict their
own performance later in life. As a result. major dairy
cattle databases in 2019 contain a hundred times more
genotyped animals than in 2009 when genomic selec-
tion was beginning (Table 1). Genomic selection is also
widely used for beef cattle, poultry. and swine breed-
ing (Ibanez-Escriche and Simianer, 2016; McDougal,
2017) and to improve major crop species (Xu et al.,
2014; Crossa et al., 2017; Hickey et al., 2017). Genomic
prediction is now being applied to many more species
(e.g., chickpeas; Roorkiwal et al., 2016). Thus, genetic
principles first discovered in peas now benefit pea selec-
tion using the same tools developed for dairy and other
species.

DNA and Genotypes

The first ingredient needed for genomic selection is
DNA. In North America, the major Al organizations
began contributing DNA from their dairy bulls to a
repository at the University of Illinois (Urbana) in 1992
(Da et al., 1994) and to another repository in Beltsville,
Maryland, in 1999 (Ashwell and Van Tassell, 1999).
Those 2 repositories were later merged and now include
DNA from more than 60,000 Al bulls.

Accurate, inexpensive genotyping made genomic
selection possible for dairy cattle and other outbred
populations. The initial cost of genotyping in 2008 was
about $250/sample with 50,000 (50K) markers but
has declined over the past decade to less than $80 for
50K or less than $40 for low-density genotyping (about
20,000 markers). Further discounts may be available
when purchasing other services or genotyping many
animals. The set of markers on each array has become
easier to customize; however, very large orders reduce

Journal of Dairy Science Vol. 103 No. 6, 2020

5292

cost, and use of a common marker set makes comparing
and evaluating animals simpler.

Genotype quality is very high for almost all markers;
error rates are often <0.1%. Quality control for both
new and previous data is greatly improved by com-
paring each animal’s genotype to those of its parents
and progeny. This process helps correct many pedigree
conflicts between reported and actual parents and
genotyping errors for individual markers. Historical
genotypes allow discovery of pedigree relationships to
many additional ancestors (such as maternal grandsires
and great grandsires) that might be unknown to the
animal’s owner (Nani et al., 2020).

The source of DNA for cattle genotyping has shifted
greatly since 2008 (Table 2). For initial development,
semen was used only for reference bulls and blood was
used for yvoung bull selection. Just 2 yr later in 2010,
arriving DNA samples included 82% from hair, 12%
from nasal swabs, 5% from blood, <1% from semen.
and <1% from ear punches (Wiggans et al., 2011). In
2018, samples included 14% from hair, <1% from nasal
swabs, 2% from blood, 1% from embryos, <1% from
semen, and 80% from ear punches.

The Council on Dairy Cattle Breeding (CDCB;
Bowie, MD) database now includes genotypes from
more than 13,000 embryos or fetuses, and selection be-
fore rather than after pregnancy could further improve
rates of genetic progress. With high selection intensity,
the upper limit on the genotyping market could in-
crease from all calves born to perhaps 5 times as many
embryos. Only those with the highest predictions would

Table 1. Worldwide livestock genotyping as of January 2009 and
January 2019

Animals (no.)

Species Genotype database 2009 2019
Dairy United States and Canada' 22,344 3,020,000
France’ , 8500 975,000
Germany and Austria’ 3,000 785,000
The Netherlands* 6,000 465,000
New Zealand® 4,500 140,000
Beef and dairy  Treland® : — 1,500,000
Beef (Angus) United States’ — 550,000
Swine Pig Improvement. Company”® — 400,000
Poultry Aviagen’ — 1,000,000"

'Council on Dairy Cattle Breeding, Bowie, MD.
’INRA, Jouy-en-Josas, France.

*VIT, Verden, Germany; ZuchtData, Wien, Austria.
‘CRV, Arnhem, the Netherlands.

LIC, Hamilton, New Zealand.

SICBF, Bandon, Ireland.

TAmerican Angus Association, Saint Joseph, MO.
*PIC, Hendersonville, TN.

*Huntsville, AL.
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Table 2. Sources of DNA samples in 2008, 2010, and 2018 for dairy cattle genotypes used in US genomic

evaluations
2008 2010" 2018

DNA source No % No. % No. %
Tissue (ear punch) 0 0 100 <1 579,255 80
Hair 0 0 22,550 82 102,229 14
Blood 623 11 1,375 5 14,656 2
Embryo 0 0 0 0 6,188 1
Nasal swab 0 0 3,300 12 656 <1
Semen 5,285 89 200 <1 319 <1
Unknown 0 0 0 0 17,048 2

"Wiggans et al. (2011).

become calves, but that strategy is not yet affordable in
commercial herds, where the costs of embryo transfer,
fertility loss, and genotyping exceed the selection gains.

Phenotypes and Reference Populations

A large reference population improves the reliability
of genomic evaluation by matching more genotypes
with phenotypes to estimate each small genetic effect.
Soon after genomic selection began, several countries in
Europe exchanged their Holstein reference bull geno-
types (Lund et al., 2011) and Interbull (Uppsala, Swe-
den) exchanged Brown Swiss bull genotypes (Jorjani et
al., 2012) to improve accuracy. Even if historic DNA
samples are available, recent generations contribute
more than earlier generations (Lourenco et al., 2014).
Accuracy of genomic prediction can be improved by
including DNA from females in the reference popula-
tion, especially if few progeny-tested males are avail-
able (Thomasen et al., 2014; Edel et al., 2016; Su et
al., 2016; Jenko et al., 2017). The US Holstein genomic
reference population now includes more than 44,000
progeny-tested bulls and over 700,000 cows with milk
records. Phenotypes are also needed in each new gen-
eration to determine whether actual merit agrees with
predicted merit.

Numbers of Variants

Initial research on marker-assisted selection used only
367 markers from 1,415 bulls (Ashwell et al., 2004), but
accuracy was too low and costs too high to implement.
Similar studies with DNA from other populations and
species had little success except to show that genetic
inheritance is very polygenic and that more markers
were needed to closely track the many genetic effects
(Dekkers and Hospital, 2002). Early genomic selection
among crosses of inbred lines of maize was effective
and affordable (Bernardo, 1994) because just a single
plant per homozygous parental line could be genotyped
rather than every individual.
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Numbers of potential variants to include in predic-
tions have greatly expanded over the last decade (Table
3). Initial genomic selection in the Netherlands used
around 3,000 markers in 2006 and 48,000 markers in
2007 (de Roos et al., 2009). The first genotyping assays
used only evenly spaced, highly polymorphic markers
(Matukumalli et al., 2009), but recent assays also now
include more than 30 documented QTL and gene tests
(Wiggans et al., 2016) and new markers with large ef-
fects selected from higher density chips or sequence data
(van den Berg et al., 2016; VanRaden et al., 2017). Ad-
ditional benefits from higher densities were often small
because many of the original 50K markers were already
highly linked to QTL. Instead, animal breeders often
opted for lower density genotyping to reduce costs.

Livestock populations share many common ances-
tors and thus longer DNA segments with high linkage
disequilibrium that can be tracked accurately with
fewer markers. In contrast, commercial human ser-
vices almost always use high-density chips to discover
ancestral origins. Higher-density genotyping is more
useful when linkage disequilibrium is lower, such as in
humans, natural populations, admixed populations, or
livestock and crops without previous intense selection.
Low-density genotyping may also be sufficient when
inbred lines of crops are crossed (Bernardo, 1994) or
when both parents and ancestors already have higher-
density genotypes.

Genotyping and sequencing have grown even more
rapidly for humans than for cattle in recent years, in
both numbers of individuals genotyped and variants
detected (Table 4). The CDCB cooperator database
had 1 million dairy cattle genotypes in August 2015
(Council on Dairy Cattle Breeding, 2015) before any
human databases had 1 million genotypes; however, hu-
man databases now have tens of millions of genotypes.
Human genotypes are now used in precision medicine
via polygenic risk scores (Torkamani et al., 2018), which
are computed from limited numbers of high-effect SNP
rather than whole-genome prediction. The US Food
and Drug Administration did not allow marketing
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Table 3. Numbers of variants tested in US dairy cattle and their data sources by year

Year Variants (no.) Data source

<1995 0 Only pedigrees and phenotypes

2003 367 Microsatellite markers (not implemented)
2008 50,000 BovineSNP50 BeadChip'

2010 777,000 High-density chip

2015 39,700,000 Whole genome sequencing

2018 >>88,000,000 1000 Bull Genomes Project®

Future New mutations Sequence data for each new AT bull
Future Epigenetics External control of gene function

Tlumina Inc. (San Diego, CA).
*http:/ /www.1000bullgenomes.com,/ .

genomic tests for human health directly to consumers
until 2017. The vast amounts of human sequencing are
funded either by large research grants or by corpora-
tions searching for drug targets. Currently, those fund-
ing sources are not options for livestock sequencing but
sequencing costs continue to decline.

Dominant mutations can have large effects on the
next generation. For example, half the daughters of the
New Zealand Holstein bull Halcyon had little or no
milk production after calving (Spelman, 2012; Little-
john et al., 2014); 12% of calves sired by the Danish
Holstein bull Captivo (with a new germline mutation
affecting only a portion of sperm) showed chondrodys-
plasia (Agerholm et al., 2016; Hafliger et al., 2019); and
half the progeny of the Canadian Holstein cow Rosabel
had red hair color (Van Doormaal, 2013; Lawlor et al.,
2014). New recessive mutations such as cholesterol de-
ficiency, which traces back to Canadian Holstein bull
Maughlin Storm. are harder to detect but may affect
more animals (Kipp et al., 2016). In the future, each
new bull used in Al could bhe sequenced to detect any
new mutations not detected in previous generations.

The 1000 Bull Genomes Project (Daetwyler et al.,
2014; http:/ /www.1000bullgenomes.com/) now includes
sequence data for more than 3,800 cattle worldwide and
has identified over 150 million filtered variants in those

cattle. In the CDCB database of 3 million genotyped
animals, 118 animals already have been detected with
new, large chromosome deletions not present in parents;
252 animals have XXY sex chromosomes analogous to
those associated with Klinefelter syndrome in humans.

Methods to identify new mutations are becoming
more exact. but methods to determine exactly which
new mutations or existing variants affect traits of inter-
est are not yet well developed. However, models can
use gene annotation to improve accuracy (MacLeod et
al., 2016; Fang et al., 2017). Even without new muta-
tions or gene editing, progress could continue for many
generations and reach selection limits far above current
merit by combining favorable effects from independent
chromosomes and haplotypes (Cole and VanRaden,
2011).

Imputation

Imputation of missing genotypes is required before
estimating marker effects or breeding values. Imputa-
tion avoids reducing the marker set to the lowest com-
mon subset from multiple array; even with 1 array, each
DNA source will have some randomly missing mark-
ers. Genotypes from many assays of differing marker
density are now combined (Figure 1). Commonly used

Table 4. Status of human genotyping and sequencing projects as of August 2019

People genotyped Variants genotyped

Technology Genotype database (millions) (millions)
High-density SNP chip AncestryDNA' >15 0.67
23andMe” =10 >0.60
UK Biobank’ 0.50 0.81
Whole genome sequence TOPMed* 0.63 463
Tllumina® _ >0.6 500
High-density SNP imputed to sequence Michigan Imputation Server® 40.9 500

'Ancestry.com (https://www.ancestry.com/), Lehi, UT.
’23andMe Ine. (https://www.23andme.com/), Mountain View, CA.

*UK Biobank Participant Resource Centre (https://www.ukbiobank.ac.uk/), Division of Population Medicine, Cardiff University, Cardiff, UK.
Trans-omics for Precision Medicine (https://www.nhlbiwgs.org/), University of Washington, Seattle, WA.

*Ilumina Inc. (https://www.illumina.com/), San Diego, CA.

“University of Michigan (https://imputationserver.sph.umich.edu/), Ann Arbor, ML
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Figure 1. Introduction of genotyping arrays for genomic evaluation of dairy cattle by number of SNP included and year. Array abbreviation

key is available at https://redmine.uscdch.com/projects/cdch-customer-service/wiki/Chips_Used_in_CDCB_Evaluation.

computer programs in animal breeding (such as Flm-
pute; Sargolzaei et al., 2014) include general pedigrees
to improve accuracy, whereas human imputation strat-
egles often ignored pedigrees because those were not
available and few relatives were genotyped.

Accuracy is affected by which animals are genotyped
at which densities (Huang et al., 2012). A high-quality
reference assembly (map) is required to locate variants
on chromosomes (Null et al., 2019). Imputation errors
reduce accuracy and can also bias predictions (Pimen-
tel et al., 2015).

Imputation to sequence from array genotypes is used
frequently in research but not yet in routine evalua-
tions. Other options are genotyping by sequencing,
which could use low-cost sequencing for a fraction of
the genome (usually fewer than 3,000 SNP) but at
higher read depth to improve genotyping accuracy
(Gorjanc et al., 2015), or low-depth sequencing of
the whole genome, which requires different statistical
methods to accurately impute genotypes from the raw
data (VanRaden et al., 2015).

Statistical Methods and Reliability

Prediction models using allelic relationships among
markers instead of pedigree relationships were initially
proposed for animals (Nejati-Javaremi et al., 1997)
and plants (Bernardo, 1994). Statistical methods have
egradually advanced from assuming normal or Bayes-
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ian distributions within breed and trait (Meuwissen
et al., 2001) to single-step, multitrait, multibreed, or
other more complex models (Méantysaari et al., 2019).
Multibreed models provide little benefit for pure breeds
unless closely related but may be needed for crossbhred
selection. A few official prediction systems use haplo-
types (Jonas et al., 2017) but most use multiple regres-
sion on individual SNP, which works well if numbers of
SNP or linkage disequilibrium are high (Calus et al.,
2008). International meta-analysis methods known as
genomic multitrait across-country evaluation (M ACE)
were developed to combine and convert genomic predic-
tions from each country onto the scales of all other
countries (Sullivan, 2019).

Reliability of predictions is low with small popula-
tions and has not increased as quickly as theory or
simulations indicated with very large reference popu-
lations. Computed and actual reliabilities should be
compared using prediction error variance instead of
squared correlations when the validation bulls have
been preselected; actual prediction reliabilities aver-
aged 71% for Holsteins and 65% for Jerseys (VanRaden
and O’Connell, 2018). Computational methods and
algorithms need to become more efficient to handle the
growing data sets (Calus et al., 2015). More advanced
statistical models with non-normal distributions,
biological priors, or nonadditive effects often give only
small advantages over simpler models unless major
QTL exist. Methods of artificial intelligence do not yet
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have proven advantages over standard genomic models
used by animal breeders (Bellot et al., 2018).

Many producers now use DNA testing to decide
which calves should be sold immediately or kept for
production or breeding. Because this decision may be
expensive to delay, predictions are now provided weekly
instead of every few months. Human DNA test results
usually arrive in 2 to 8 wk, depending on the com-
pany and optional priority fees. Increased frequency of
animal genomic evaluations has required approximate
prediction methods that require less computation than
reprocessing all data (Alkhoder et al., 2014; Wiggans
et al., 2015). Producers also use predictions updated
with more data later in life to decide which heifers and
cows should be inseminated with elite dairy, beef, or
sex-sorted semen and which should be embryo donors
or recipients.

Previously, genetic evaluations focused on additive
effects transmitted to progeny in the next generation,
but animals may rank differently for their own predicted
producing ability (Kelleher et al., 2015). This could in-
clude their own inbreeding (rather than expected future
inbreeding of progeny), dominance effects, permanent
environmental effects, health history (Yao et al., 2015),
and eventually traits predicted from gene expression or
other omics data in the future.

APPLICATION OF GENOMIC SELECTION
New Traits

Many new traits now evaluated often have low heri-
tability or require large initial investments to obtain
phenotypes, which provides further incentive to cooper-
ate internationally (de Haas et al., 2015). For the least
heritable traits, reliabilities for genomic predictions of
young animals may now be higher than for traditional
evaluations of progeny-tested bulls in the past. Selec-
tion indexes that include these new traits can increase
profitability if economic values are derived correctly.
Economic progress is less than optimum if valuable
traits are excluded from the index or if the new traits
are assigned more value than they deserve.

Genetic-by-environmental interactions are already
predicted across countries by MACE and by genomic
MACE (Sullivan, 2019) and could be predicted in the
future for traits such as heat tolerance (Ravagnolo and
Misztal, 2000; Nguyen et al., 2017), resilience (Mul-
der, 2016), or other herd-specific environmental effects
(Schultz and Weigel, 2019). Genomic predictions for
several crop species now model environmental interac-
tions to improve accuracy by 10 to 40% (Crossa et al.,
2017).
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Breeders should plan how they will use information
and compare costs and benefits before deciding on ge-
netic testing options (Kaniyamattam et al., 2016). The
first phase is initial investment to obtain a reference
population., and the next phase is choosing candidates
to test and select. Eventually, the genotyped candidates
also enter the reference population so that growth is au-
tomatic if phenotyping continues. In early years when
genotyping costs were high, only reference bulls and
the most elite young calves were genotyped. As testing
prices dropped, producers also tested heifer calves with
the poorest parent averages to decide on early culling
or heifers with missing pedigrees because those gained
the most information from testing (Weigel et al., 2012).

Successful genomic prediction increases the benefits
from other reproductive technologies such as sexed se-
men, beef semen. or embryo transfer that also increase
selection intensity (Granleese et al., 2015; Loi et al.,
2016; Fleming et al., 2018). Generation intervals were
about 5 yr but have been greatly reduced to just over 2
yr (except in the dams-of-females path), because young
animals have the highest average merit and now also
have high reliability (Garcia-Ruiz et al., 2016).

Genomic selection is cost effective because a single
DNA sample can provide accurate predictions for many
traits, ancestor confirmation or discovery, and infor-
mation for herd reproductive management. The initial
focus on additive merit has expanded to include reces-
sive alleles (Adams et al., 2016), mating programs (Sun
et al., 2013), genomic inbreeding, crossbreeding, and
estimation of breed contributions. In contrast, estimat-
ing geographic origin of ancestors is often the primary
service of human genotyping (Ancestry.com, 2018).

International databases improve prediction accuracy
by increasing the reference population size compared
with the within-country genetic evaluations previously
designed for progeny testing, but multitrait methods
and more computation may be required. Obtaining
genomic predictions from an international database is
usually more cost effective than computing predictions
from only local data unless local breeds, conditions, or
traits differ greatly from the large database. Genomic
selection has greatly shifted the incentives and benefits
for collecting phenotypes (Gonzalez-Recio et al., 2014)
and has become even more relevant when investing in
new phenotypes such as feed intake. The cost of de-
veloping a domestic system of genomic prediction in
each country may be too high if accurate predictions
are already available from foreign databases (Matthews
et al., 2019). As a result, CDCB has provided genomic
predictions to breeders in more than 50 countries for
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tens of thousands of calves in South America, Asia, and
Oceania (Figure 2).

Implementation of genomic prediction proceeded
quickly without many legal issues because most re-
searchers did not patent the genetic and statistical
concepts used. Patents on gene tests slowed down im-
plementation by preventing important QTL or selected
markers from being included in widely available chips.
Private organizations that invest to collect data and
build reference populations need to protect the value
of their investments. Government organizations such as
USDA previously provided evaluation services for free,
but genomic prediction has become a big business that
must generate revenue.

Reverse engineering could wundercut the value
of reference data sets by back-solving for SNP ef-
fects using only genomic predictions and genotypes
without phenotypes. The process is similar to using
EBV deregression and pedigrees to reverse-engineer
average daughter phenotypes. Recipients of genomic
evaluations calculated by CDCB must agree to “not
decompile, disassemble, analyze or otherwise examine
the Software and Services for the purpose of reverse
engineering ...” (Council on Dairy Cattle Breeding,
2017). Such predictions might contribute nothing back
to organizations that invest in collecting phenotypes.
Before trading bull genotypes, some organizations also
agreed not to reverse-engineer any traits evaluated only
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by the sending organization and not by the receiving
organization. Genotype exchange agreements may state
that any computed breeding values must include the
country’s own reference animals and not be computed
for traits only in the other country’s database.

Biases and Mistakes

Statistical research initially focused mainly on im-
proving reliability of predictions but soon also focused
on removing biases so that breeders could properly
compare younger and older bulls (Mantysaari et al.,
2010). The small biases shown in simulations were
larger with real data because of selection, preferential
treatment of bull dams, nonadditive genetic effects,
changing trait definitions across time, and inclusion of
correlated foreign data. Biases were reduced by includ-
ing polygenic effects (Liu et al., 2011), replacing parent
average with pedigree index to exclude biases from elite
dams (Rensing et al., 2009), adjusting the weights used
for blending conventional with genomic information, or
reducing heritability in conventional models. More re-
cently, single-step models have been applied to remove
further bias from genomic preselection and improve
accuracy (Mantysaari et al., 2019).

Upward bhiases were common in parent averages of
young US AI bulls before 2009. Those biases decreased
after genomic predictions were implemented, statisti-

Figure 2. Numbers of genotyped dairy cattle in the 2019 US national database for genomic evaluation by global region.

Journal of Dairy Science Vol. 103 No. 6, 2020
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cal methods were refined, and the reference population
increased (Figure 3). Before 2009, parent averages of
young bulls for net merit were higher than PTA of
progeny-tested bulls, but the young bulls did not actu-
ally have higher genetic merit. Since 2009, the actual
advantage of the top 100 young bulls over the top
100 progeny-tested bulls for net merit improved each
year with more genomic testing and intense selection
of young bulls. Some small declines in later compared
with initial evaluations are expected for net merit of
both progeny-tested and young bulls across time be-
cause of changes in their expected future inbreeding
and inclusion of new traits in net merit.

Despite rapid genetic gains, some decisions and
strategies since implementation may not have been
optimal. Individual breeders could not do genomic test-
ing of their own bulls in the first 5 yr, and in recent
years many Al companies have limited the access to
their best new bulls. The opposite problem can occur
and has occurred when too many breeders focus on
the same top young bull. Genomic inbreeding increased
faster than expected because predictions are more ac-
curate for the largest families and breeds.

When genomic testing began, every laboratory had
problems matching DNA samples to the correct ID.
Often, all animal genotypes on a single chip were mis-
matched because DNA intended for the left row was
placed on the right row and vice versa. Such problems
were identified statistically by counting parent mis-
matches per chip when pedigree was available and later
solved by better laboratory automation instead of hand
pipetting. A similar problem occurred at the farm level
when DNA samples were all shifted by 1 compared with
the ID list. That problem was later solved mainly by
applying an ear tag at the same time as sampling the
ear tissue. Bulls used in Al are required to be geno-
typed again to ensure that the semen sold matches the
DNA originally tested.

Transfer of genomic data was not always simple
due to the variety of formats used. causing occasional
data processing mistakes. Other countries often recuire
a format different than the national format. Revised
SNP names and SNP numbers even for the same chip
caused occasional mismatches of input files. Different
chip manufacturers may report different allele coding.
Laboratories need to decide whether or how to store
DNA or extracted DNA for later reprocessing and how
to manage efficient, accurate retrieval. Because indi-
vidual genotypes were usually determined accurately,
raw allelic intensity ratios were not stored nationally,
but could be helpful in resolving marker problems or
detecting copy number variants.

Initial investments could have been larger in comput-
ing resources, genotyping historical US bulls, testing
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Figure 3. Initial and final (April 2019) PTA averages of the top
100 US AT Holstein bulls for net merit adjusted to the 2019 genetic
base; young bulls had no milking daughters, and progeny-tested bulls
had 100 daughters or more.

high-density chips, sequencing, and collecting data for
additional traits. Some of these seemed costly at the
time, but benefits increased quickly with the rapid
growth of genotyping. Because genomic databases grew
faster than computer resources, programs had to be
revised many times to improve efficiency. Finding a
common SNP subset is more difficult with the wide
variety of chips in use, and each chip requires addi-
tional manufacturing expense. Nearly 20,000 historical,
progeny-tested bulls with DNA in the Cooperative
Dairy DNA Repository have not yet been genotyped
with any chip but would add less information to the
reference population now than 10 yr ago. The most
important bulls were genotyped so that most ancestor
bulls are genotyped in the 10-generation pedigrees of
currently registered animals.

Strategies for Other Populations

Genomic selection can be applied to additional traits,
breeds, and species, but implementation is much easier
for those with historical databases and well-developed
international markets for elite breeding stock. Re-
searchers should begin by simulating potential reliabili-
ties and calculating expected returns on investment
before implementing genomic selection. This may first
recuire collecting sufficient phenotypes and pedigrees
to estimate trait parameters and sufficient genotypes
to determine population structure and check accuracy
of the pedigrees. Permanent, unique national or in-
ternational ID are needed, preferably using standard
methods approved by the International Committee on
Animal Recording. Deciding which traits to phenotype
and to improve is also a key step. To get started, large
investments may be required to build reference popu-
lations, design genotyping tools, test predictions, and
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develop services. Such investments may or may not pay
off depending on the reliability achieved, the size of
the potential market, and the number of other orga-
nizations offering similar, better, or cheaper services.
Progress is faster in many cases with cooperation than
with only competition.

Further application of genomics combined with repro-
ductive tools, genotype-by-environment interactions,
across-breed prediction, sequencing, and bioinformat-
ics should further speed progress for dairy cattle and
other species in the next decade. The genetic trend for
lifetime net merit of Holstein dairy cattle has already
doubled with a huge return on investment during the
last decade (Rexroad et al., 2019).

CONCLUSIONS

Genomic prediction methods developed for dairy
cattle are now applied widely to many other animal,
human. and plant populations. The DNA predictions
adopted 10 yr ago have improved rapidly. Accuracy im-
proves as data sets expand and more traits are included.
Large numbers of genotypes and phenotypes are needed
to detect the many small effects of individual genes.
Genomic information also now has many new uses
such as for pedigree discovery, mating programs. and
guiding reproductive management. Future predictions
will use more gene tests discovered from sequence data
and more international genotypes. As costs decline and
data sets expand, genomic selection will be applied to
new populations and species.
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