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ABSTRACT

The objective of this study was to assess the reliabil-
ity and bias of estimated breeding values (EBV) from 
traditional BLUP with unknown parent groups (UPG), 
genomic EBV (GEBV) from single-step genomic BLUP 
(ssGBLUP) with UPG for the pedigree relationship 
matrix (A) only (SS_UPG), and GEBV from ssGB-
LUP with UPG for both A and the relationship matrix 
among genotyped animals (A22; SS_UPG2) using 6 
large phenotype-pedigree truncated Holstein data sets. 
The complete data included 80 million records for milk, 
fat, and protein yields from 31 million cows recorded 
since 1980. Phenotype-pedigree truncation scenarios 
included truncation of phenotypes for cows recorded 
before 1990 and 2000 combined with truncation of 
pedigree information after 2 or 3 ancestral generations. 
A total of 861,525 genotyped bulls with progeny and 
cows with phenotypic records were used in the analy-
ses. Reliability and bias (inflation/deflation) of GEBV 
were obtained for 2,710 bulls based on deregressed 
proofs, and on 381,779 cows born after 2014 based on 
predictivity (adjusted cow phenotypes). The BLUP 
reliabilities for young bulls varied from 0.29 to 0.30 
across traits and were unaffected by data truncation 
and number of generations in the pedigree. Reliabilities 
ranged from 0.54 to 0.69 for SS_UPG and were slightly 
affected by phenotype-pedigree truncation. Reliabilities 
ranged from 0.69 to 0.73 for SS_UPG2 and were unaf-
fected by phenotype-pedigree truncation. The regres-
sion coefficient of bull deregressed proofs on (G)EBV 
(i.e., GEBV and EBV) ranged from 0.86 to 0.90 for 
BLUP, from 0.77 to 0.94 for SS_UPG, and was 1.00 
± 0.03 for SS_UPG2. Cow predictivity ranged from 
0.22 to 0.28 for BLUP, 0.48 to 0.51 for SS_UPG, and 
0.51 to 0.54 for SS_UPG2. The highest cow predic-
tivities for BLUP were obtained with the most extreme 

truncation, whereas for SS_UPG2, cow predictivities 
were also unaffected by phenotype-pedigree trunca-
tions. The regression coefficient of cow predictivities on 
(G)EBV was 1.02 ± 0.02 for SS_UPG2 with the most 
extreme truncation, which indicated the least biased 
predictions. Computations with the complete data set 
took 17 h with BLUP, 58 h with SS_UPG, and 23 
h with SS_UPG2. The same computations with the 
most extreme phenotype-pedigree truncation took 7, 
36, and 15 h, respectively. The SS_UPG2 converged in 
fewer rounds than BLUP, whereas SS_UPG took up to 
twice as many rounds. Thus, the ssGBLUP with UPG 
assigned to both A and A22 provided accurate and 
unbiased evaluations, regardless of phenotype-pedigree 
truncation scenario. Old phenotypes (before 2000 in 
this data set) did not affect the reliability of predictions 
for young selection candidates, especially in SS_UPG2.
Key words: unknown parent group, reliabilities, 
genomic selection, cow validation

INTRODUCTION

Genomic evaluations for the US dairy industry follow 
the multistep method presented in VanRaden (2008) 
and VanRaden et al. (2009). In this method, BLUP is 
used to derive deregressed proofs or equivalent pseudo-
phenotypes, which are then used as dependent variables 
in a model to estimate SNP effects. Genomic PTA are 
obtained as weighted sums of SNP estimated values 
times the number of reference alleles in SNP genotypes 
and combined with parent averages adjusted for the 
portion due to genotyped animals to avoid double 
counting. This method is particularly appropriate when 
phenotypic and genomic data have separate ownership, 
and it is well accepted by the dairy industry.

The multistep method was developed when genotyp-
ing was performed almost exclusively on bulls, and 
genomic selection was yet to be widespread. When 
genotyping was extended to a large number of females, 
modifications were developed to reduce bias in genomic 
EBV (GEBV; Wiggans et al., 2011, 2012), and lately, 
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the modifications have been replaced by a reduction 
in heritabilities (VanRaden et al., 2014). Additionally, 
with the use of genomic selection, deregressed proofs 
from BLUP became biased by preselection (Patry and 
Ducrocq, 2011). Adjustments for preselection are ongo-
ing, following the amount of preselection by year and 
sex.

A valid alternative to the multistep procedure is 
single-step genomic BLUP that utilizes phenotypic, 
pedigree, and genomic information (Legarra et al., 
2009; Christensen and Lund, 2010). This method is an 
extension of the traditional BLUP, where the pedigree 
relationship matrix (A) is replaced by H, the realized 
relationship matrix that blends A and the genomic re-
lationship matrix G (Aguilar et al., 2010). Single-step 
GBLUP can use male and female genotypes directly 
and accounts for genomic preselection (Masuda et al., 
2018). Although single-step genomic BLUP (ssGB-
LUP) was initially expensive with a large number of 
genotypes, computing refinements exploiting small ef-
fective population size and limited dimensionality of 
the genomic information (15,000 for Holstein) made 
computing inexpensive for any population size (Frago-
meni et al., 2015; Masuda et al., 2016; Misztal, 2016).

Past applications of ssGBLUP in dairy were lim-
ited because of problems with unknown parent groups 
(UPG) used to account for missing pedigree informa-
tion. When UPG were applied only to A, the conver-
gence of ssGBLUP was slow, or the iterative method 
for obtaining solutions diverged (Tsuruta et al., 2014; 
Matilainen et al., 2016). Misztal et al. (2013) proposed 
using UPG for all components of the inverse of H with 
the Quaas–Pollak (QP) transformation (Quaas, 1988). 
The new UPG strategy improved the convergence rate 
and was successfully applied by Matilainen et al. (2016) 
in a Nordic dairy cattle population, and by Misztal 
et al. (2017) in US Holsteins with data recorded until 
2014. Masuda et al. (2018) analyzed the US Holstein 
data set with records until 2015 and found lower reli-
abilities for GEBV from ssGBLUP with the new UPG 
compared with a model with no UPG. These UPG were 
poorly estimated, likely because a large number of gen-
otyped commercial females born after 2014 had missing 
or incorrect pedigree information, and most of them 
had no phenotypes (Bradford et al., 2019). Tsuruta et 
al. (2019) found that UPG could be better estimated 
by refining the UPG formulas in ssGBLUP, reducing 
the number of groups, and incorporating inbreeding for 
unknown parents.

A comprehensive approach for the construction of 
UPG was presented by Legarra et al. (2015), using the 
concept of metafounders, in which incomplete pedigree 
relationships are adjusted to G derived with equal gene 
frequencies using various algorithms. In subsequent 

studies, ssGBLUP with metafounders delivered the 
least biased GEBV in simulated data sets, whereas 
ssGBLUP with UPG as in Tsuruta et al. (2019) was 
less biased in field data sets. Most likely, the use of 
metafounders requires updated parameter estimation 
to work well with highly unbalanced data sets.

Truncating old pedigree information can also help 
to reduce biases due to missing information (Lourenco 
et al., 2014). In fact, an important question in genetic 
evaluations is whether old generations of pedigree, 
phenotypes, and genotypes should be used. Despite 
access to a large number of generations, some broiler 
companies use only 3 generations of data because more 
generations do not improve prediction accuracy for 
selection candidates but do increase computing time 
(Vivian Breen, Cobb-Vantress Inc., Siloam Springs, 
AR, personal communication). Lourenco et al. (2014) 
looked into the effect of data and pedigree truncation 
on accuracy of genomic predictions in dairy cattle and 
pigs. Truncation to about 2 generations of data did not 
reduce accuracy and sometimes improved it. Similar 
results were found by Howard et al. (2018). Data trun-
cation in dairy cattle may be affected by decreasing 
generation intervals (Mäntysaari et al., 2020), change 
of trait definitions under improved management (Tsu-
ruta et al., 2005), and decay of genomic information 
with selection (Muir, 2007).

The objective of this study was to assess the reliabil-
ity and bias of EBV from traditional BLUP with UPG, 
GEBV from ssGBLUP with UPG for the pedigree rela-
tionship matrix (A) only (SS_UPG), and GEBV from 
ssGBLUP with UPG for both A and the relationship 
matrix among genotyped animals (A22; SS_UPG2) 
using 6 large phenotype-pedigree truncated Holstein 
data sets.

MATERIALS AND METHODS

Data

Data used in the official genetic evaluations for 
yield traits in US Holstein cattle were provided by the 
Council on Dairy Cattle Breeding (Bowie, MD). Three 
different phenotype cut-off dates were considered: (1) 
yield records recorded from January 1980 to December 
2018 (Pheno1980); (2) records from January 1990 to 
December 2018 (Pheno1990); and (3) records from 
January 2000 to December 2018 (Pheno2000). In 
addition, 2 pedigree depths that traced pedigree infor-
mation for 2 (Depth2) and 3 generations (Depth3) 
back for animals with phenotypes, genotypes, or both, 
were considered for each phenotypic data set. This 
yielded 6 phenotype-pedigree truncation scenarios: 
Pheno1980-Depth3, Pheno1980-Depth2, Pheno1990-
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Depth3, Pheno1990-Depth2, Pheno2000-Depth3, and 
Pheno1990-Depth2. Genotypes for 79,294 SNP from 
861,525 animals were included in the analyses of the 6 
phenotype-pedigree truncation scenarios (613,210 cows 
with phenotypes plus 248,315 ancestors of these cows). 
Number of records, cows, and genotypes in the 3 pheno-
type cut-offs (1980, 1990, and 2000) as well as number 
of pedigree animals in the 6 phenotype-pedigree trun-
cation scenarios are shown in Table 1. Numbers of cows 
with both phenotypes and genotypes changed among 
scenarios; there were 613,210 in Pheno1980, 613,154 in 
Pheno1990, and 612,148 in Pheno2000, respectively.

Model and Analysis

Three evaluation methods were considered: (1) 
traditional BLUP with unknown parent groups based 
on year of birth, (2) ssGBLUP with unknown parent 
groups only in A (SS_UPG), and (3) ssGBLUP with 
UPG for both A and the pedigree relationship matrix 
for genotyped animals (A22) (SS_UPG2), implemented 
as in Tsuruta et al. (2019). In all the 3 models, UPG 
were defined according to year of birth, which ranged 
from 1974 to 2018. As one UPG was set every 2 yr, a 
total of 23 UPG were used in the analyses. The number 
of animals with missing parents that were linked to 
each UPG is in Supplementary File S1 (http:​/​/​dx​.doi​
.org/​10​.17632/​r3v49629jf​.1; Cesarani, 2021); the num-
ber of animals with phenotypes and linked to UPG is 
in Supplementary File S2.

The 3-trait repeatability animal model used for the 
traditional BLUP model was

	 y Xb Z h Z Q g Z a Z p eh a a a a p= + + + + + , 	

where y = vector of milk, fat, and protein yield phe-
notypic records; b = vector of fixed herd-management 
effects, age-parity effects, inbreeding coefficient co-
variates, and Holstein fraction covariates; h = vector 
of random herd-sire effects; ga = vector of unknown 

parent groups based on year of birth; a = vector of 
animal additive genetic effects; p = vector of perma-
nent environmental effects; and e = vector of residuals. 
Matrix X is an incidence matrix relating phenotypic 
records in vector y to fixed effects in vector b, matrix 
Zh is an incidence matrix relating phenotypic records in 
vector y to herd-sire effects in vector h, matrix Za is an 
incidence matrix relating phenotypic records in vector 
y to animal additive genetic effects in vector a, matrix 
Qa  is an incidence matrix relating animals in vector a 
to unknown parent groups in vector ga, and matrix Zp 
is an incidence matrix relating phenotypic records in 
vector y to permanent environmental effects in vector 
p. Vector h has mean zero and variance I ⊗ Vh, where 
Vh is a diagonal 3 × 3 matrix of herd-sire variances and 
covariances, and ⊗ is the Kronecker product. Vector a 
has mean zero and variance Λ ⊗ Va, where Λ is A in 
BLUP and H in ssGBLUP and Va is a 3 × 3 matrix 
of additive genetic variances and covariances. Vector 
p has mean zero and variance I ⊗ Vp, where Vp is a 
3 × 3 matrix of permanent environment variances and 
covariances. Vector e has mean zero and variance I ⊗ 
Ve, where Ve is a 3 × 3 matrix of residual variances 
and covariances.

The 3-trait SS_UPG and SS_UPG2 models con-
tained the same effects as the traditional BLUP model; 
however, the covariance structure for Zaa and ZaQaga 
included genomic relationships. The covariance matrix 
for the additive genetic effect in SS_UPG was given by

	 H A G AUPG
* * ,= + −





















− −

0 0 0

0 0
0 0 0

1
22
1

APY 	

where HUPG
*  is the inverse of the realized relationship 

matrix with unknown parent groups added to the pedi-
gree relationship matrix A; A* is the inverse of the 
pedigree relationship matrix with unknown parent 
groups; that is, modified with the QP transformation 
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Table 1. Number of records, cows, genotypes, and pedigree animals in 3 phenotype cut-off and 2 pedigree depth scenarios

Phenotype 
cut-off scenario1  

Phenotype 
cut-off year

Number of

Genotypes2

Animals in pedigree3

Records Cows Depth3 Depth2

Pheno1980 1980 77,799,792 31,485,126 861,525 40,527,946 39,879,498
Pheno1990 1990 61,229,782 25,694,479 861,525 34,019,303 33,252,617
Pheno2000 2000 42,218,748 18,373,166 861,525 25,173,433 24,406,750
1Pheno1980 = phenotypes recorded between January 1980 and December 2018; Pheno1990 = phenotypes from January 1990 to December 2018; 
and Pheno2000 = phenotypes from January 2000 to December 2018.
2Genotypes were used in genomic models only; that is, SS_UPG (SsGBLUP with unknown parent groups only in A) and SS_UPG2 (ssGBLUP 
with unknown parent groups for both A and the pedigree relationship matrix for genotyped animals).
3Depth3 = pedigree traced 3 generations back; Depth2 = pedigree traced 2 generations back.

http://dx.doi.org/10.17632/r3v49629jf.1
http://dx.doi.org/10.17632/r3v49629jf.1
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(Quaas, 1988); GAPY
−1  is the inverse of the genomic rela-

tionship matrix constructed using the algorithm for 
proven and young (APY; Misztal et al., 2014) with 
15,000 randomly selected core animals; and A22

1−  is the 
inverse of the matrix of pedigree relationships among 
genotyped animals. The covariance matrix for the addi-
tive genetic effect in SS_UPG2 was given by

	 H A G A A Q

Q A Q A Q
UPG2

1
22
1

22
1
2

2 22
1

2 22
1
2

0 0 0

0

0

*
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

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


, 	

where HUPG2
*  is the inverse of the realized relationship 

matrix with unknown parent groups added to the pedi-
gree relationship matrix A and to the matrix of pedi-
gree relationships among genotyped animals A22; Q2 is 
a matrix assigning genotyped animals to UPG; all the 
other matrices have been previously described. As 
GAPY
−1  relies on the inverse of G for core animals, 95% 

of G was combined with 5% of A22 to avoid singularity 
problems. The G matrix was built according to method 
1 of VanRaden (2008), being centered and scaled by 
current allele frequencies from all genotyped animals.

The 3-trait mixed model equations were solved using 
iteration on data and a block preconditioning conju-
gate gradient with software the BLUP90IOD2 (version 
3.113; Tsuruta et al., 2001; Tsuruta and Misztal, 2008). 
Variance components for milk yield, fat yield, and pro-
tein yield were obtained from VanRaden et al. (2014). 
The heterogeneous herd variance was adjusted accord-
ing to Wiggans and VanRaden (1991). Computations 
were carried out on a Linux server (x86_64) with 512 
GB of RAM and equipped with Intel Xeon E5–2683 v4 
(2.10 GHz) processors with 32 computing cores. The 
convergence criterion was 10−15, and was computed as 
the norm squared of the difference between the right-
hand-side and the left-hand-side of the mixed model 
equations, scaled by the norm squared of left-hand-side.

Validation of Breeding Values

Genomic EBV were validated for each phenotype-
pedigree truncation scenario. Phenotypes for cows 
born after 2014 were removed in the reduced data sets. 
Genotyped cows born between 2014 and 2017 that had 
phenotypes in the complete but not in the reduced data 
sets were considered to be validation cows, whereas val-
idation bulls were the genotyped sires of those valida-
tion cows (i.e., validation bulls without daughters with 
phenotypes in the reduced data sets).

The ability to predict the future performance of 
young candidates was used for validation (Tsuruta et 
al., 2011; Lourenco et al., 2015; Masuda et al., 2016). 
Estimates of daughter yield deviations (DYD) for 
validation bulls and phenotypes adjusted for all fixed 
effects and random effects other than animal and re-
sidual (YPRED) for validation cows were obtained using 
the complete data set. The DYD were estimated for 
all bulls using the method by Liu et al. (2004) and 
the algorithm by Mrode and Swanson (2004), both 
implemented using in-house software. The YPRED were 
calculated using PREDICTF90 (version 1.5; Misztal et 
al., 2018).

Regression coefficients of DYD or YPRED on (G)EBV 
(i.e., GEBV and EBV) were used to measure the infla-
tion of predictions for 2,710 bulls and 381,779 cows in 
the validation data set. The coefficient of determination 
between DYD and (G)EBV was used as a measure of 
reliability of predictions for validation bulls. The reli-
ability for validation cows was calculated as the square 
of the correlation between YPRED and (G)EBV divided 
by the heritability; the simple correlation is known as 
predictive ability.

Last, the stability of subsequent BLUP, SS_UPG, 
and SS_UPG2 evaluations for validation bulls and 
cows was calculated as the correlation between predic-
tions from the reduced and complete data sets (Legarra 
and Reverter, 2018).

RESULTS AND DISCUSSION

Bull Reliabilities

Reliabilities of (G)EBV for bulls with the 3 methods 
and the 6 phenotype-pedigree truncation scenarios are 
shown in Figure 1. Bull EBV reliabilities from BLUP 
were low (around 0.30) and similar across the 6 pheno-
type-pedigree truncation scenarios. The small effect of 
past generations could be explained by the fact that the 
BLUP EBV for validation animals were equal to parent 
averages, and high-reliability sires and dams were cho-
sen as potential sires of bulls. Bull GEBV reliabilities 
from SS_UPG were as high as 0.69, and interaction 
between phenotype cut-off year and pedigree depth was 
observed. Bull GEBV reliabilities from SS_UPG2 de-
clined with fewer phenotypes. Conversely, the reliabili-
ties with pedigree depth3 were slightly higher with less 
data. Bull reliabilities from SS_UPG2 were highest (up 
to 0.73), and changes due to year of phenotype cut-off 
were less numerous. The lack of SS_UPG2 reliability 
interactions between phenotype cut-offs and pedigree 
depths indicated that this method was effective in ac-
counting for a base population when data were missing.

Cesarani et al.: SINGLE-STEP GENOMIC PREDICTIONS FOR YIELD TRAITS
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Slightly higher coefficients of determination were ob-
served for milk yield, followed by fat and protein yields. 
Coefficient of determination differences among traits 
were larger with SS_UPG and SS_UPG2 than with 
BLUP. The highest bull coefficients of determination 
from SS_UPG2 ranged from 0.69 (protein yield) to 0.73 
(milk yield). These raw reliability values were similar 
to the adjusted reliabilities of 0.74 for milk yield, 0.73 
for fat yield, and 0.66 for protein yield reported by 
VanRaden et al. (2017). Fragomeni et al. (2019) showed 
that the adjustment caused an average increase of 20% 
in reliabilities.

Masuda et al. (2018) applied the exact UPG (UPG 
assigned to A, G, and A22; Misztal et al., 2013) to the 
2015 US Holstein data set with about 764,000 geno-
typed animals. They obtained reliabilities for protein 
yield with exact UPG that were 60% lower than with 
no UPG, possibly because the QP-transformed H with 
exact UPG was ill-conditioned. As G does not rely on 

pedigree missingness, there may be no need to fit UPG 
in G (Tsuruta et al., 2019). The latter authors reported 
less bias in genetic trends for type traits in Holsteins 
when UPG were fit only for A and A22; however, reli-
abilities were similar.

Cow Predictive Abilities and Reliabilities

Cow predictive ability (predictivity) and reliability 
from all methods and phenotype-pedigree truncation 
scenarios are presented in Table 2. The predictivities 
for BLUP ranged from 0.22 to 0.28 and were indepen-
dent of pedigree depth, but they increased with year 
of phenotype cut-off. The reasons for the increase in 
predictivity with less data are unclear but may be 
due to preferential treatment of genotyped cows and 
inflated evaluation of ancestors. Cow predictivities with 
SS_UPG reached 0.51 and were stable with pedigree 
depth3. Cow predictivities with pedigree depth3 were 

Cesarani et al.: SINGLE-STEP GENOMIC PREDICTIONS FOR YIELD TRAITS

Figure 1. Coefficients of determination (R2) between bull daughter yield deviations (DYD) and EBV from BLUP in 2019 and between DYD 
and genomic EBV from SS_UPG (ssGBLUP with unknown parent groups only in A) and SS_UPG2 (ssGBLUP with unknown parent groups 
for both A and the pedigree relationship matrix for genotyped animals) in 2014 in the validation data set under 6 phenotype-pedigree trunca-
tion scenarios. Pheno1980 = phenotypes recorded between January 1980 and December 2018; Pheno1990 = phenotypes from January 1990 to 
December 2018; and Pheno2000 = phenotypes from January 2000 to December 2018. Depth3 = pedigree traced 3 generations back; Depth2 = 
pedigree traced 2 generations back.
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slightly higher, with more data for milk and fat yields 
but slightly less for protein yield. Cow predictivities 
with SS_UPG2 were similar across all truncation sce-
narios. Variation in SS_UPG cow predictivity among 
different phenotype-pedigree truncation scenarios were 
likely due to the inability of SS_UPG to account for 
UPG over time.

Average cow predictivities across traits were 0.25 ± 
0.02 for BLUP, 0.49 ± 0.01 for SS_UPG, and 0.53 ± 
0.01 for SS_UPG2, whereas average cow reliabilities 
were 0.17 ± 0.02 for BLUP, 0.70 ± 0.04 for SS_UPG, 
and 0.80 ± 0.04 for SS_UPG2. The increases of 8% in 
cow predictivity and 14% in cow reliability achieved by 
fitting UPG to both A and A22 instead of only to A 
show the importance of correctly accounting for miss-
ing pedigree information in ssGBLUP. Thus, SS_UPG2 
was the most appropriate method to describe predic-
tion changes over time and to estimate future yield 
performance of cows. Almost no differences in cow 
predictivity were observed among the 6 phenotype-
pedigree truncation scenarios with SS_UPG2; however, 
differences existed among traits. On average, the lowest 
cow predictivities were those for protein yield and the 
largest were for milk yield with SS_UPG and SS_UPG2 
and for fat yield with BLUP.

Predictivity can be tied to reliability. If 

accuracy predictivity= h2  (Legarra et al., 2008), then 
reliability = predictivity2/h2, where h2 is the heritability 
of the trait. Cow predictivity reached 0.54 in this study. 
This means that for reliability < 1, h2 > predictivity2 or 
h2 > 0.542; hence, h2 must be greater than 0.29. How-

ever, this argument assumes that only one record per 
cow is available. In our study, validation cows had an 
average of 1.46 ± 0.63 lactation records in the complete 
data. Some studies have indicated that heritabilities for 
dairy traits are declining, with low heritabilities provid-
ing the highest reliabilities and lowest biases for GEBV 
(VanRaden et al., 2014). Tsuruta et al. (2019) reported 
that GEBV inflation can be reduced by using smaller 
additive genetic variances in the analysis. However, this 
may be an artifact due to using BLUP in the first stage 
of the evaluation, or perhaps because of inaccurate 
measures of reliability or bias. The algorithm used here 
to compute DYD for sires depends on solutions ob-
tained by BLUP; hence, it may be biased because it 
does not account for selection decisions based on ge-
nomic information (Patry and Ducrocq, 2011; Masuda 
et al., 2018). Further, cow predictivity is a function of 
solutions for fixed effects, which may be biased because 
of incomplete model fitting (Bermann et al., 2020).

Biases for Bull and Cow (G)EBV and Consistency 
Between Subsequent Evaluations

Regression coefficients of validation bull DYD on (G)
EBV for the 6 phenotype-pedigree truncation scenarios 
are shown in Figure 2. An interaction between phe-
notype cut-off year and pedigree depth is visible. The 
regression coefficients for validation bulls from BLUP 
and SS_UPG were very similar for all traits across the 
6 phenotype-pedigree truncation scenarios, with values 
close to 0.9, except for protein yield, which was around 
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Table 2. Predictive abilities and reliabilities (in parentheses) from BLUP, SS_UPG, and SS_UPG2 for validation cows (n = 381,779) under 6 
phenotype-pedigree truncation scenarios1

Truncation scenario2

Validation cows

BLUP

 

SS_UPG

 

SS_UPG2

Milk Fat Protein Milk Fat Protein Milk Fat Protein

Pheno1980–Depth3 0.23 0.25 0.22   0.51 0.49 0.48   0.54 0.54 0.51
(0.14) (0.14) (0.13)   (0.74) (0.69) (0.66)   (0.83) (0.83) (0.74)

Pheno1980–Depth2 0.23 0.25 0.22   0.52 0.50 0.48   0.54 0.54 0.51
(0.14) (0.14) (0.13)   (0.77) (0.71) (0.66)   (0.83) (0.83) (0.74)

Pheno1990–Depth3 0.24 0.25 0.23   0.51 0.49 0.48   0.54 0.54 0.51
(0.14) (0.14) (0.14)   (0.74) (0.69) (0.66)   (0.83) (0.83) (0.74)

Pheno1990–Depth2 0.24 0.26 0.23   0.51 0.49 0.48   0.54 0.54 0.51
(0.14) (0.15) (0.14)   (0.74) (0.69) (0.66)   (0.83) (0.83) (0.74)

Pheno2000–Depth3 0.26 0.28 0.25   0.51 0.49 0.48   0.54 0.54 0.51
(0.15) (0.15) (0.14)   (0.74) (0.69) (0.66)   (0.83) (0.83) (0.74)

Pheno2000–Depth2 0.26 0.28 0.25   0.50 0.48 0.49   0.54 0.54 0.51
(0.15) (0.15) (0.14)   (0.71) (0.66) (0.69)   (0.83) (0.83) (0.74)

1Heritability was assumed to be 0.35 for the computation of reliabilities. SS_UPG = ssGBLUP with unknown parent groups only in A; SS_
UPG2 = ssGBLUP with unknown parent groups for both A and the pedigree relationship matrix for genotyped animals.
2Pheno1980 = phenotypes recorded between January 1980 and December 2018; Pheno1990 = phenotypes from January 1990 to December 2018; 
and Pheno2000 = phenotypes from January 2000 to December 2018. Depth3 = pedigree traced 3 generations back; Depth2 = pedigree traced 
2 generations back.



Journal of Dairy Science Vol. 104 No. 5, 2021

5849

0.85, indicating some degree of inflation. Masuda et 
al. (2018) reported a considerable level of inflation 
on GEBV for protein yield in US Holstein bulls when 
using ssGBLUP with UPG either in A, G, and A22 
(regression coefficient = 0.51) or in A only (regression 
coefficient = 0.78). Conversely, the SS_UPG2 regres-
sion coefficients for validation bulls in our study, which 
considered UPG for A and A22, were very stable at 
1.02 ± 0.02. Thus, correct fitting of UPG to account 
for missing pedigrees in ssGBLUP leads to less biased 
predictions.

The regression coefficients of cow YPRED on EBV 
were very low (around 0.5), indicating strong inflation. 
These low regression coefficients indicate that BLUP 
was inadequate to provide reasonable cow evaluations 
without any modification or rescaling, perhaps because 
of genomic preselection. The regression coefficient of 
cow YPRED on GEBV from SS_UPG was substantially 
higher (around 0.9), indicating that inflation was lower 
than with BLUP. The least inflated/deflated method 
was SS_UPG2 with a regression coefficient equal to 
1.03 ± 0.03. Small fluctuations among regression coef-
ficients were observed across the 6 phenotype-pedigree 
truncation scenarios.

Regression coefficients should be as close to 1 as pos-
sible, which means that (G)EBV for young validation 
animals are correctly shrunk, and therefore are good 
estimators of future male (DYD) and female (YPRED) 
performance. Values <1 indicate inflation, whereas 
higher values indicate deflation of (G)EBV. Deviations 
within 5% from unity are considered good predictions, 
and values within 15% are assumed to be acceptable 
(Tsuruta et al., 2011). Better BLUP regression coeffi-
cients (close to 1) were observed for bulls (0.89 ± 0.02) 
than for cows (0.50 ± 0.08). This was expected because 
of the larger amount of information available for males. 
Adding genomic information to the models improved 
the regression coefficients more for cows than for bulls. 
Overall, SS_UPG regression coefficients averaged 0.87 
± 0.06 for bulls and 0.93 ± 0.04 for cows. Better re-
gression coefficients with ssGBLUP than with BLUP 
were reported for bulls from the 2014 US Holstein data 
set (around 569,000 genotyped animals; Masuda et al., 
2016). The use of UPG in both A and A22 matrices 
led to better SS_UPG2 average regression coefficients 
for bulls (1.00 ± 0.02) and to slightly deflated breed-
ing values for cows (1.06 ± 0.04). No large effects due 
to the 6 phenotype-pedigree truncation scenarios were 
found for validation bulls. However, a slight increasing 
trend was observed for validation cows because a reduc-
tion in the number of records had a positive effect on 
the validation of predictions. Average regression coeffi-
cient values for genomic and nongenomic methods were 
0.80 ± 0.28 for Pheno1980, 0.82 ± 0.25 for Pheno1990, 

and 0.86 ± 0.21 for Pheno2000. The 2 considered 
pedigree depths (depth3 and depth2) had no effect 
on regression coefficients. Similar average regression 
coefficients were found for validation bulls and cows 
across all phenotype-pedigree truncation scenarios and 
prediction methods. This could be explained by small 
differences among the sizes of data sets in depth3 and 
depth2 (Table 1). On average, tracking the pedigree 
back for one more generation resulted in the addition of 
approximately 700,000 animals, representing only 2% 
of the population.

Correlations between (G)EBV estimated with the 
complete and reduced data sets are presented in Table 
3. Higher values indicate that the considered method 
is more stable over time. The highest correlations 
were those from SS_UPG2, suggesting that (G)EBV 
based on reduced data sets using this method were 
good predictors of the (G)EBV of young animals when 
phenotypes of their daughters were added to the data 
set. Cows had higher correlations than bulls, possibly 
because they had less data added from one evaluation 
to the next. Correlations for BLUP and SS_UPG2 were 
invariant to phenotype cut-off year and pedigree depth, 
whereas small differences were observed for SS_UPG.

Computational Aspects

Table 4 shows the number of rounds to convergence 
and time per round for the 6 phenotype-pedigree trun-
cation scenarios. Numbers of rounds to convergence 
were approximately 500 for BLUP, 1,000 for SS_UPG, 
and 400 for SS_UPG2. The smaller number of rounds 
of iteration with SS_UPG2 than with SS_UPG and 
BLUP indicates a better conditioned system of equa-
tions. As expected, the time per round was about twice 
as large for single-step methods than for BLUP. The 
total computing time was almost halved when only 
phenotypes recorded from 2000 to 2018 (Pheno2000) 
were used, compared with using phenotypes from 1980 
to 2018 (Pheno1980). Computation times to conver-
gence with Pheno1980 took 17 h for BLUP, 58 h for 
SS_UPG, and 23 h for SS_UPG2. These computation 
times were reduced to 7 h for BLUP, 36 h for SS_UPG, 
and 15 h for SS_UPG2 with Pheno2000.

The lower computing times with SS_UPG2 than 
with SS_UPG indicate that the inverse of H was better 
conditioned when UPG were fitted to both A and A22 
than to A only. Further, SS_UPG2 provided the great-
est reliability and the least inflated/deflated GEBV for 
validation bulls and cows, and it was less affected by 
the removal of old data. The small influence of old phe-
notypes on reliability could be due to a massive influx 
of genomic information that made phenotypic data tied 
to genomic information important, and pre-genomic 
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Figure 2. Regression coefficients (b1) of bull daughter yield deviations (DYD, top) and cow adjusted phenotypes (YPRED, bottom) on EBV 
from BLUP in 2018 and on genomic EBV from SS_UPG (ssGBLUP with unknown parent groups only in A) and SS_UPG2 (ssGBLUP with 
unknown parent groups for both A and the pedigree relationship matrix for genotyped animals) in 2014 in the validation data set under 6 
phenotype-pedigree truncation scenarios. Pheno1980 = phenotypes recorded between January 1980 and December 2018; Pheno1990 = pheno-
types from January 1990 to December 2018; and Pheno2000 = phenotypes from January 2000 to December 2018. Depth3 = pedigree traced 3 
generations back; Depth2 = pedigree traced 2 generations back.
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phenotypes less important. The small effect of addi-
tional generations of pedigree could be linked to UPG 
correctly accounting for missing pedigree information 
for all animals including genotyped ones.

The current genomic evaluation for dairy cattle in 
the United States has 2 additional features not included 
in this study. First, it incorporates Interbull-provided 
deregressed proofs from other countries as external 
information. External information provided by Inter-
bull was successfully included in ssGBLUP in 2019 
(Guarini et al., 2019). Second, it uses a BayesA-type 
of approach (VanRaden, 2008) that considers different 
weights for SNP (including causative SNP), aiming to 
increase the reliability of predictions. Fragomeni et al. 
(2019) showed that causative SNP can be accommo-
dated in ssGBLUP via a weighted genomic relationship 
matrix. In an evaluation of Belgian Blue cattle for type 
traits, Gualdrón-Duarte et al. (2020) showed that SNP 
selection/weighting in Bayesian methods or ssGBLUP 
increased the reliability on average from 0.46 to 0.50 
compared with unweighted ssGBLUP. The reliability of 
unweighted ssGBLUP was 0.52. Utilization of weights 
from previous methods increased the reliability of 
weighted ssGBLUP to 0.55.

In our study, genomic models outperformed BLUP 
on all considered criteria (coefficient of determina-
tion, regression coefficient, consistency between 
subsequent evaluations), and between the genomic 
models, SS_UPG2 showed better performance than 
SS_UPG. Negligible differences were observed among 
the 3 phenotype cut-offs (Pheno1980, Pheno1990, and 
Pheno2000), indicating that decreasing the number of 
phenotypic records in the data set from ~78 to ~42 mil-
lion did not affect the predictive ability of the models. 
The superior performance of SS_UPG2 indicated that 
missing pedigree information should be correctly mod-
eled in both A and A22. Legarra et al. (2015) proposed 
the concept of metafounders, where UPG are treated 
as founder animals in the pedigree. This concept can 
be useful in situations in which pedigrees are complex 
or scarcely recorded, especially for multibreed popu-
lations. An ssGBLUP with metafounders improved 
the reliability and predictive ability of purebred and 
crossbred animals, and had less inflated/deflated pre-
dictions in a population of Landrace, Yorkshire, and 
Landrace-Yorkshire pigs using a joint pedigree with 2 
metafounders to account for parental the breeds (Xiang 
et al., 2017).

CONCLUSIONS

Genomic predictions for yield traits in US Holstein 
bulls and cows using single-step GBLUP are reliable 
and nearly unbiased when unknown parent groups cor-
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rectly account for missing pedigree information for non-
genotyped and genotyped animals. In this model, old 
generations of phenotypes and pedigree can be removed 
without either compromising reliability or increasing 
prediction biases for young selection candidates, yet 
reducing computing time. Additionally, this single-step 
GBLUP model does not require any postanalysis ad-
justments and can be applied to any model used in 
dairy genetic evaluations.
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1Convergence criterion = 10−15; SS_UPG = ssGBLUP with unknown parent groups only in A; SS_UPG2 = 
ssGBLUP with unknown parent groups for both A and the pedigree relationship matrix for genotyped animals.
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