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ABSTRACT

Marker sets used in US dairy genomic predictions 
were previously expanded by including high-density 
(HD) or sequence markers with the largest effects for 
Holstein breed only. Other non-Holstein breeds lacked 
enough HD genotyped animals to be used as a reference 
population at that time, and thus were not included 
in the genomic prediction. Recently, numbers of non-
Holstein breeds genotyped using HD panels reached 
an acceptable level for imputation and marker selec-
tion, allowing HD genomic prediction and HD marker 
selection for Holstein plus 4 other breeds. Genotypes 
for 351,461 Holsteins, 347,570 Jerseys, 42,346 Brown 
Swiss, 9,364 Ayrshires (including Red dairy cattle), and 
4,599 Guernseys were imputed to the HD marker list 
that included 643,059 SNP. The separate HD reference 
populations included Illumina BovineHD (San Diego, 
CA) genotypes for 4,012 Holsteins, 407 Jerseys, 181 
Brown Swiss, 527 Ayrshires, and 147 Guernseys. The 
643,059 variants included the HD SNP and all 79,254 
(80K) genetic markers and QTL used in routine national 
genomic evaluations. Before imputation, approximately 
91 to 97% of genotypes were unknown for each breed; 
after imputation, 1.1% of Holstein, 3.2% of Jersey, 6.7% 
of Brown Swiss, 4.8% of Ayrshire, and 4.2% of Guern-
sey alleles remained unknown due to lower density 
haplotypes that had no matching HD haplotype. The 
higher remaining missing rates in non-Holstein breeds 
are mainly due to fewer HD genotyped animals in the 
imputation reference populations. Allele effects for up 
to 39 traits were estimated separately within each breed 
using phenotypic reference populations that included 
up to 6,157 Jersey males and 110,130 Jersey females. 
Correlations of HD with 80K genomic predictions for 
young animals averaged 0.986, 0.989, 0.985, 0.992, and 

0.978 for Jersey, Ayrshire, Brown Swiss, Guernsey, and 
Holstein breeds, respectively. Correlations were highest 
for yield traits (about 0.991) and lowest for foot angle 
and rear legs–side view (0.981and 0.982, respectively). 
Some HD effects were more than twice as large as the 
largest 80K SNP effect, and HD markers had larger 
effects than nearby 80K markers for many breed-trait 
combinations. Previous studies selected and included 
markers with large effects for Holstein traits; the newly 
selected HD markers should also improve non-Holstein 
and crossbred genomic predictions and were added to 
official US genomic predictions in April 2020.
Key words: marker selection, imputation, minor 
breeds, high-density genotype, genomic prediction

INTRODUCTION

In the last 2 decades, the fast-paced advancements 
in genotyping technologies dramatically transformed 
the era of dairy genomic selection. Genomic selection 
for dairy cattle is now more accurate because of larger 
reference populations and increased numbers of mark-
ers added to the DNA marker panel used for routine 
analysis of economically important traits (García-
Ruiz et al., 2015; Lund et al., 2016). The accuracy of 
genomic evaluation can be further improved by (1) 
increasing the number of genotyped animals in the 
reference population (Wiggans et al., 2016; Hayes and 
Daetwyler, 2019), (2) including more accurate pheno-
types connected to the genotyped animals directly or 
by an accurate pedigree record (Berry et al., 2014), and 
(3) strategically selecting and expanding the number 
of large-effect genomic markers included in the predic-
tion model (Pausch et al., 2013; Tribout et al., 2020). 
In the United States, the well-established phenotypic 
and pedigree records of the Holstein breed and the 
large number of Holstein animals genotyped with high-
density (HD) genomic panels has allowed more SNP 
to be selected and included in the genomic prediction 
strategy (VanRaden et al., 2013).

The availability of a large reference population plus 
whole-genome sequence data from the 1000 Bull Ge-
nomes Project (Hayes and Daetwyler, 2019) for hun-
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dreds of Holsteins has allowed further expansion of the 
SNP set used in routine predictions (Brøndum et al., 
2015; VanRaden et al., 2017). Use of either HD chips 
(>600,000 SNP) or whole-genome sequence also requires 
the development and validation of computational tools 
to impute large numbers of genomic variants for ani-
mals genotyped with low-density (LD; <30,000 SNP) 
and medium-density (MD; 30,000–150,000 SNP) chips 
(García-Ruiz et al., 2015; Lund et al., 2016). Genomic 
prediction accuracy could be significantly improved by 
expanding the pool of markers used in the prediction 
model (VanRaden et al., 2017).

Many non-Holstein breeds such as Ayrshire, Brown 
Swiss, Guernsey, and Jersey have limited numbers of 
animals genotyped with HD marker panels. A smaller 
reference population size would reduce the accuracy 
of estimating the markers’ effects and the overall reli-
ability of the genomic predictions (Cooper et al., 2016; 
Wiggans et al., 2016; Hayes and Daetwyler, 2019; Tri-
bout et al., 2020). These breeds are still lagging behind 
in using HD panels for genomic selection because of 
the cost associated with HD chips compared with LD 
and MD chips (Berry et al., 2014; García-Ruiz et al., 
2015). Recently, more non-Holstein animals have been 
genotyped with HD marker panels, which provides an 
opportunity to use them in the reference population 
as well as imputing HD genotypes from LD and MD 
marker panels. This should increase the population size 
available for non-Holstein breeds, facilitate more ac-
curate calling of large-effect markers, and improve the 
reliability of genome-wide association analysis to select 
variants for future genomic prediction (Hozé et al., 
2013; Ma et al., 2013; Pausch et al., 2013). Predictions 
can improve by selecting markers from multiple breeds 
instead of just 1 (Kemper et al., 2015).

The main objectives of this study were to (1) use HD 
genotypes imputed from LD and MD marker panels to 
estimate, identify, and select markers with the largest-
effect SNP for up to 39 economically important traits 
of 5 dairy cattle breeds, (2) compare prediction models 
using 79,254 (80K) markers versus imputed HD mark-
ers for the non-Holstein breeds, and (3) allow future 
DNA chips and routine US predictions to include, for 
the first time, large-effect markers selected from HD 
genotypes for Ayrshire, Brown Swiss, Guernsey, and 
Jersey breeds.

MATERIALS AND METHODS

Study Populations and Imputation

Genomic, phenotypic, and pedigree data were sup-
plied by the Council on Dairy Cattle Breeding (CDCB; 
Bowie, MD) from the national cooperator database in-
cluding evaluations and pedigrees of foreign bulls from 
Interbull (Uppsala, Sweden). Genotypes for 755,340 
animals (351,461 Holsteins, 347,570 Jerseys, 42,346 
Brown Swiss, 9,364 Ayrshires, and 4,599 Guernseys) 
were examined and are categorized by chip density (HD, 
MD, or LD) in Table 1. Millions of Holsteins have been 
genotyped, but only Holstein bulls, their ancestors, and 
females with HD genotypes were included, whereas all 
genotypes of the other breeds were included. All LD 
and MD genotypes were imputed to HD using Findhap.
f90, version 3 (VanRaden et al., 2015).

A new reference assembly of the bovine genome, 
ARS-UCD1, was applied to imputation, and the new 
map has improved performances in marker locations, 
sequence alignment, and genotype imputation com-
pared with the previous UMD 3.1 reference assembly 
(Null et al., 2019; Rosen et al., 2020). Quality control of 
the imputed genotypes followed (Wiggans et al., 2010). 
The imputed genotypes were not pruned for high LD 
as in previous HD studies for Holsteins (Wiggans et 
al., 2016; Ye et al., 2019), and all HD markers were 
kept to improve marker density and accuracy of poten-
tial later imputation to sequence. Available SNP were 
categorized as those from the initial 50K chip, those 
already included in 80K routine predictions as of April 
2019, those from the HD chip, sequence SNP previously 
selected from Holstein data and added to chips (Van-
Raden et al., 2017), and QTL included in recent chips 
by genotyping laboratories (Wiggans et al., 2016). Chip 
manifests introduced after 2016 were compared with 
previous SNP lists to identify additional QTL now be-
ing genotyped.

Phenotypic Reference Population

The multistep genomic predictions used deregressed 
national and international PTA as phenotypes. The 
phenotypic reference population included genotyped 
bulls and cows with progeny records or their own phe-
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Table 1. Number of animals genotyped using different density panels by breed

Genotyping array density Holstein Jersey Brown Swiss Ayrshire Guernsey

High (reference population) 4,012 407 181 527 147
Medium (30,000–150,000 SNP) 166,440 60,395 28,061 3,027 1,544
Low (<30,000 SNP) 181,009 286,768 14,104 5,810 2,908
All 351,461 347,570 42,346 9,364 4,599
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notypes in the conventional pedigree evaluations, or the 
conventional multitrait across-country evaluations from 
Interbull. The remaining young animals without records 
or progeny were used as a test population to compare 
predictions. Numbers of animals and traits per breed 
used for the SNP effect estimation are shown in Table 
2. Number of progeny-tested bulls (bulls with daughter 
milk records) ranged from 447 for Guernseys to 43,140 
for Holsteins. Number of cows with milk records of each 
breed used as a reference ranged from 550 for Guern-
seys to 40,835 for Holsteins. Reference population size 
was slightly reduced for some other traits (e.g., when 
a bull had no progeny or cow had no phenotype for 
that trait). The phenotypic reference for each trait was 
used to estimate SNP effects with the 643,059 SNP set 
and the 80K SNP set used routinely, and then genomic 
predictions from the 2 sets were compared. The largest 
SNP effects from the HD marker set were selected for 
potential inclusion in future chips and in routine evalu-
ations.

Estimation of SNP Effects and Marker Selection

After imputation, the 643,059 SNP were used for 
estimation of SNP effects for 26 to 39 traits depen-
dent on breed (Table 2). Those markers included the 
original SNP from the HD chip as well as all the 80K 
markers. The iteration model to estimate SNP effects is 
described by VanRaden (2008) and is based on a Bayes 
A algorithm.

To compare SNP estimates across traits and breeds, 
absolute effects were divided by the square root of vari-
ance of effect sizes within trait and breed to obtain 
standardized effect sizes (genSD). To prevent selecting 
too many markers for the same QTL, the genome was 
divided into nonoverlapping 10-Mb windows, and num-

bers of selected SNP were limited within each window. 
For Holsteins, which have a large reference population, 
markers were selected if genSD was >5, but with a 
maximum of the 5 largest SNP selected per window. 
For Jerseys, genSD had to be >7, and a maximum of 
only 3 SNP were selected per window. For Brown Swiss, 
Ayrshires, and Guernseys, genSD was required to be 
>10, with a maximum of 2 SNP selected per window. 
The more stringent requirements for the smaller breeds 
were because smaller reference populations tend to 
reduce accuracy for imputation and estimation of the 
SNP effects, and because fewer breeders would benefit 
from SNP selected for those populations.

RESULTS AND DISCUSSION

Marker Availability Before and After Imputation

Before imputation, percentage of markers that had 
genotypes available ranged from 3.5 for Jerseys to 10.4 
for Ayrshires; after imputation, the percentage of called 
plus imputed HD markers ranged from 93.3 for Brown 
Swiss to 98.9 for Holsteins (Table 3). Thus, about 90% 
of markers available for SNP effect estimation were 
from imputation rather than from the original called 
LD, MD, and HD genotypes within each breed. The 
remaining small fractions of alleles that are not filled by 
imputation primarily result from genotypes observed 
at lower density that have no matching haplotype 
observed at higher density, and the remaining missing 
alleles within those haplotypes are set equal to allele 
frequencies during marker effect estimation. This im-
putation loss affects HD marker selection, but future 
effects computed in routine prediction should be more 
accurate after the selected markers are added to chips 
and genotyped directly.
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Table 2. Numbers of animals and traits for estimation of SNP effects by breed

Animals and traits (number) Holstein Jersey Brown Swiss Ayrshire Guernsey

Progeny-tested bulls 43,140 6,157 7,112 766 447
Cows with records 40,835 110,130 3,252 550 1,238
Total reference population 83,975 116,287 10,364 1,316 1,685
Traits 39 26 29 26 26

Table 3. Percentages of medium- and low-density SNP genotypes available for effect estimation before and 
after imputation1 by breed

SNP genotype Holstein Jersey Brown Swiss Ayrshire Guernsey

Before imputation 6.8 3.5 6.2 10.4 8.6
After imputation 98.9 96.8 93.3 95.2 95.8
1Genotypes were imputed using Findhap, version 3 (VanRaden et al., 2015).
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The percentage available for each breed after imputa-
tion appeared to be dependent mainly on the number 
of HD genotypes in the reference population (Table 1), 
the percentage of LD chips used, and, to a lesser extent, 
breed population structure. For example, Jerseys had 
fewer SNP missing after imputation than did Ayrshires 
despite slightly more HD genotypes for Ayrshires, per-
haps because Ayrshires and other Red dairy cattle may 
be genetically more diverse than Jerseys (Brøndum et 
al., 2011). At least 50,000 markers may be needed to 
achieve accurate imputation to HD (Chud et al., 2015). 
Other studies (Gao et al., 2013; Hozé et al., 2013; Ma 
et al., 2013; Pausch et al., 2013) also highlighted the 
importance of pedigree information for more accurate 
imputation. Prephasing of the tested population and 
its reference resulted in faster computation with higher 
imputation accuracy and less biased genomic predic-
tion. Imputation using Findhap (version 3) with 24 
processors took <2 d for each breed. Future research 
could compare HD imputation and marker selection 
from all breeds simultaneously versus separately.

Largest SNP Effects from Imputed HD Markers

The total number of large-effect SNP markers se-
lected was 11,045, including 8,922 unique SNP markers 
because some large-effect SNP overlap among breeds 
or traits. The high proportion of unique to total mark-
ers indicated little overlap across breeds. The selected 

marker list consisted of large-effect SNP from imputed 
HD markers for all of the studied traits in 5 dairy 
cattle breeds. Among all of the selected large-effect 
SNP, 35% of the selected SNP were within the official 
80K marker set and 62% were from HD chip (Table 
4). In proportion to the number of available SNP, the 
selected SNP included 11.47% of the SNP previously 
added from large-effect sequence markers and 9.76% 
of the QTL that are now genotyped on several chips. 
The number of selected SNP markers among breeds are 
in Table 5. More than half of selected SNP (55.8%) of 
the total SNP were from Holsteins, and the rest of the 
SNP (44.2%) were distributed almost evenly among the 
other 4 breeds.

The top 5 traits that had the most selected markers 
were heifer conception rate (3.9%), followed by mastitis 
(3.7%), net merit (3.7%), metritis (3.6%), and rear ud-
der height (3.3%) as listed in Table 6. All traits had 
reasonable numbers of SNP selected, ranging from 90 
to 426 (Supplemental Table S1, https: / / www .ars .usda 
.gov/ ARSUserFiles/ 80420530/ Publications/ Scientific/ 
Journals/ JDS -19260 _SupplTableS1 .pdf). The traits 
were expected to be almost evenly represented, but 
some had more or fewer SNP above the limit. An alter-
native would be to select SNP in proportion to relative 
economic value, but that could overlook SNP with a 
large effect on unique traits of interest but small effects 
on the main index.

The HD markers had larger effects than nearby 80K 
markers for many breed-trait combinations. Some were 
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Table 4. Overview of the selected marker list of large-effect SNP

SNP genotyping category

Available

 

Selected
Percentage of available 

markers selectedNumber % Number %

80,000 SNP list 79,254 12.32  3,127 35.05 3.95
 50,000 SNP chip 46,290 7.20  1,298 14.55 2.80
 Sequence1 750 0.12  86 0.96 11.47
 QTL2 82 0.01  8 0.09 9.76
Original high-density chip 554,014 86.15  5,539 62.08 1.00
All SNP 643,059   8,922  1.39
1SNP previously selected from run 5 sequence data from 1000 Bull Genomes Project (Hayes and Daetwyler, 2019) and added to chips.
2Known causal mutations previously added to chips.

Table 5. Number of SNP selected per breed

Breed
Number 
of SNP

Percentage 
of total

Holstein 6,162 55.8
Jersey 1,423 12.9
Brown Swiss 1,145 10.4
Ayrshire 1,304 11.8
Guernsey 1,011 9.2
Total 11,045 100

Table 6. Number of SNP selected for the top 5 traits

Trait
Number 
of SNP

Percentage 
of total

Heifer conception rate 426 3.9
Mastitis 412 3.7
Net merit 409 3.7
Metritis 394 3.6
Rear udder height 366 3.3

https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS1.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS1.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS1.pdf
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expected simply from the larger number of HD mark-
ers, but several had consistently larger effects across 
traits. For Jerseys, HD SNP on chromosome 11 at 104 
Mb had the largest effects for fore udder attachment, 
front teat placement, rump width, and rump angle. For 
udder cleft and teat length, HD SNP had larger effects 
than for the highest 80K SNP. Large new effects were 
also discovered from HD SNP for daughter pregnancy 
and cow conception rates. For Brown Swiss, HD mark-
ers had the largest effects for fat yield, fat percentage, 
SCS, cow conception rate, and several type traits. For 
Ayrshires, HD markers on chromosome X at 118 Mb 
had the largest effects on milk, fat, and protein yields. 
Other traits on which HD markers had the largest ef-
fects were net merit, productive life, SCS, daughter 
pregnancy rate, heifer and cow conception rates, and 
several type traits. For Guernseys, HD markers had 
larger effects than the previously discovered very large 
effects on chromosome 19 at 28 Mb for many traits 
(Cooper et al., 2016).

Gene tests previously reported to have large effects 
had large effects in the HD analysis and in the routine 
predictions. The DGAT1 gene test had about the same 
effect size as nearby 50K and HD markers, indicating 
close linkage or some imputation loss because DGAT1 
is not genotyped in most animals (Grisart et al., 2002). 
Gene tests for the bovine growth hormone receptor 
GHRJA microsatellite (Blott et al., 2003) had the 
largest effects on fat and protein percentages in Brown 
Swiss and Ayrshires. The β-LG gene (Ganai et al., 2009) 
test had the largest effect for fat yield in Brown Swiss, 
but for protein in Jerseys, it had smaller effects than 3 
nearby HD SNP. The MC1R gene test for red hair color 
(Klungland et al., 1995) had large effects for net merit, 
protein, productive life, final score, rear udder height, 
and foot angle for Jerseys, and protein for Brown Swiss, 
perhaps indicating some introgression of Holstein DNA 
rather than a direct effect of MC1R. This report does 
not focus on Holsteins, but the ABCG2 (Cohen-Zinder 
et al., 2005) gene test had the largest effect on net 
merit; the new cholesterol deficiency mutation test had 
large effects on SCS and teat length, and new SNP 
added to track the polled mutation had large effects on 
SCS and front teat placement.

The selected markers were provided by CDCB to ap-
proved genotyping laboratories in September 2019 for 

potential inclusion in their future chips. In April 2020, 
the selected markers from this project were included in 
routine genomic prediction and SNP effect estimation 
by CDCB. Additional HD markers selected with the 
largest effects on residual feed intake in Holsteins in a 
companion study (Li et al., 2019) were provided to the 
laboratories and included in routine genomic prediction 
at these same times. Instead of only adding SNP, thou-
sands of previously used SNP with the smallest effects 
were also removed from routine predictions to reduce 
the growth in computation.

Genomic Predictions and Marker Effects  
(HD vs. 80K)

The genomic predictions using the 80K markers ver-
sus HD imputed markers were further compared for the 
young genotyped animals that did not yet have pheno-
types. The prediction correlations in Table 7 were high 
for Holstein, Jersey, and Ayrshire (0.983, 0.988, and 
0.991, respectively), but lower for Brown Swiss (0.970) 
and Guernsey breeds (0.921). The lower prediction cor-
relations in Brown Swiss and Guernsey breeds could 
be caused by the smaller HD reference populations 
available for imputing SNP markers from LD and MD 
chips. More detailed correlations of the genomic pre-
dictions for each breed and trait are in Supplemental 
Table S2 (https: / / www .ars .usda .gov/ ARSUserFiles/ 
80420530/ Publications/ Scientific/ Journals/ JDS -19260 
_SupplTableS2 .pdf).

An advantage of the imputed HD markers over the 
80K markers was that imputed HD markers often had 
larger SNP effects when compared with those previous-
ly used from the 80K list. Figure 1 shows an example of 
SNP effects calculated from the imputed HD and from 
80K. The marker effects are for productive life and are 
calculated using data for Guernseys, which have the 
smallest breed population size and a major QTL on 
chromosome 19. The Manhattan plot in Figure 1 panel 
A shows the BTA19 SNP effects calculated for the HD 
chip (green) versus for the 80K (red); the HD SNP 
(green) are very condensed and form a higher peak 
compared with a lower condensed and shorter peak for 
the 80K SNP (red). The same result is confirmed when 
comparing variances explained by these markers. The 
green peak for the HD imputed markers forms a higher 
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Table 7. Correlations (Corr) of high-density (HD) with 80K genomic predictions for young animals (bulls 
and heifers)

Item Jersey Ayrshire Brown Swiss Guernsey Holstein

Corr (HD, 80K) 0.988 0.991 0.970 0.921 0.983

https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS2.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS2.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/Scientific/Journals/JDS-19260_SupplTableS2.pdf
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and more condensed peak, representing a larger effect 
and better quality compared with the same markers 
from the 80K.

Overall, the SNP selection could identify important 
new SNP to include in future chips and in the genomic 
prediction, despite the limited HD genotyped reference 
population. Directly using all HD markers often gives 
little advantage, even for across-breed prediction (Har-
ris et al., 2011). The HD chip is useful for discovery, 
but routine predictions cannot afford to include all HD 
markers or sequence variants available that provide 
only small benefits, especially for the millions of Hol-
steins. Genomic prediction reliabilities from imputed 
data could perhaps have higher accuracy by utilizing 
a Bayesian mixture model or exponential power model 
(Su et al., 2012; Gao et al., 2013), or restricting the HD 
markers based on gene annotation (Erbe et al., 2012).

CONCLUSIONS

Markers with the largest effects for multiple economi-
cally important traits were selected from imputed HD 
genotypes for 5 dairy breeds using methods previously 
applied to Holsteins. Smaller HD reference populations 
in those non-Holstein populations limited the imputa-
tion accuracy, but many of the imputed HD markers 
showed larger estimated effects than the nearby 80K 
markers used previously. High correlations, averaging 
0.986 for HD with 80K predictions, did not indicate 
major benefits from additional markers. Given that 
both marker sets resulted in very similar breeding val-

ues, using the 80K set is preferable because it has a cost 
advantage over the HD chip. Additionally, including 
selected markers and QTL directly on genotyping chips 
will reduce imputation losses and improve prediction 
accuracy in the future. As indicated by previous stud-
ies, adding large-effect SNP or replacing 80K markers 
with nearby HD SNP, sequence SNP, or QTL that have 
larger effects is anticipated to gradually improve reli-
ability for all breeds and crossbreds.
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Figure 1. Manhattan plots of (A) marker effects and (B) explained variance across BTA19 for productive life of Guernseys based on high-
density (HD; green) and 80K (red) SNP.
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