J. Dairy Sci. 105:5954-5971
https://doi.org/10.3168/jds.2021-21739

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Multiple-trait random regression modeling of feed efficiency in US Holsteins

P. Khanal,! K. L. Parker Gaddis,? M. J. Vandehaar," K. A. Weigel,® H. M. White,* F. Pefiagaricano,® J. E. Koltes,*

J. E. P. Santos,’ R. L. Baldwin,® J. F. Burchard,? J. W. Diirr,2 and R. J. Tempelman™
1Departmen‘c of Animal Science, Michigan State University, East Lansing 48824-1225

2Council on Dairy Cattle Breeding, Bowie, MD 20716

3Departmen‘c of Animal and Dairy Sciences, University of Wisconsin, Madison 53706

"Department of Animal Science, lowa State University, Ames 50011
5Departmen‘cofAnimaI Science, University of Florida, Gainesville 32608

SAnimal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705

ABSTRACT
Residual feed intake (RFI) and feed saved (F'S) are

important feed efficiency traits that have been increas-
ingly considered in genetic improvement programs.
Future sustainability of these genetic evaluations will
depend upon greater flexibility to accommodate sparse-
ly recorded dry matter intake (DMI) records on many
more cows, especially from commercial environments.
Recent multiple-trait random regression (MTRR)
modeling developments have facilitated days in milk
(DIM)-specific inferences on RFI and FS, particularly
in modeling the effect of change in metabolic body
weight (MBW). The MTRR analyses, using daily data
on the core traits of DMI, MBW, and milk energy (Mil-
kE), were conducted separately for 2,532 primiparous
and 2,379 multiparous US Holstein cows from 50 to
200 DIM. Estimated MTRR variance components were
used to derive genetic RFI and IS and DIM-specific ge-
netic partial regressions of DMI on MBW, MilkE, and
change in MBW. Estimated daily heritabilities of RFI
and FS varied across lactation for both primiparous
(0.05-0.07 and 0.11-0.17, respectively) and multiparous
(0.03-0.13 and 0.10-0.17, respectively) cows. Genetic
correlations of RFI across DIM varied (>0.05) widely
compared with FS (>0.54) within either parity class.
Heritability estimates based on average lactation-wise
measures were substantially larger than daily heritabili-
ties, ranging from 0.17 to 0.25 for RFI and from 0.35 to
0.41 for FS. The partial genetic regression coefficients
of DMI on MBW (0.11 to 0.16 kg/kg"™ for primiparous
and 0.12 to 0.14 kg/kg"™ for multiparous cows) and of
DMI on MilkE (0.45 to 0.68 kg/Mcal for primiparous
and 0.36 to 0.61 kg/Mecal for multiparous cows) also
varied across lactation. In spite of the computational
challenges encountered with MTRR. the model po-
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tentially facilitates an efficient strategy for harnessing
more data involving a wide variety of data recording
scenarios for genetic evaluations on feed efficiency.
Key words: residual feed intake, feed saved, multiple
trait. random regression

INTRODUCTION

Residual feed intake (RFI) has been included in the
lifetime net merit index used to evaluate US dairy cows
for total genetic merit. Genetic evaluations for feed
saved (FS) which combines RFI with feed intake due
to differences in BW are also now provided (Gaddis
et al., 2021). These evaluations have benefited from
large and ongoing research investments made into the
recording of DMI at various US dairy research facili-
ties. The primary RFI input into these national genetic
evaluations are generally based on 42 d, and less often
28 d (VanRaden et al., 2021), of almost continuously
recorded DMI and milk yields along with less frequent-
ly recorded milk components, and, typically, even less
frequently recorded BW.

Sustained recording of DMI is required to ensure
future reliable genetic evaluations for RFT and its con-
tinued incorporation in net merit. Recently, Negussie et
al. (2019) determined that sparse recording scenarios,
such as recording DMI much less frequently through-
out a lactation on individual cows, might be effectively
used to provide reliable genetic evaluations for DMI
and RFT on sires, provided that more cows are recordecd
for DMI relative to scenarios based on more intensive
recording. Although it is not the intent of this paper
to speculate how many more current or future cows
sparsely recorded for DMI could be used, future genetic
evaluations should flexibly allow the incorporation of
as many available records on DMI as possible on cows
from other research stations or representative commer-
cial dairy farms.

A clear statistical modeling strategy for flexibly mod-
eling repeated records from various stages of lactation
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involves the use of random regression models (Negussie
et al.,, 2019). The use of random regression models
flexibly allows genetic parameters (e.g., heritabilities,
genetic correlations) to vary across lactation. However,
even then. such a strategy requires the specification of
key energy sinks needed to define RFI, namely milk
energy (MIlKE), metabolic BW (MBW = BW"™)
and change in BW (dBW) or, equivalently, change in
MBW (dMBW). A classical regression-based approach
is typically used to derive RET based on the estimated
residuals from fitting weekly DMI as a linear function
of averages of MilkE and MBW as well as dBW over
a week (Tempelman et al., 2015; Li et al., 2017) or
even over longer intervals of time (Lu et al., 2018).
This RFI is typically referred to as phenotypic RFI
(pPRFI). Although daily continuous recording of DMI
can be readily averaged to provide weekly DMI data,
BW., and milk components required to determine MilkE
are often measured less frequently and thereby require
interpolation to obtain RFI for weekly or longer time
frames. Furthermore, because of less frequent recording
of BW at some research stations relative to others, it
is unclear how to properly weight the varying sparsity
of recording on (M)BW, and hence dBW, accordingly
when estimating partial regressions between DMI and
the energy sinks in the determination of RFI. This will
likely be an even greater issue if data from commercial
dairies is used in the future.

Recently, Islam et al. (2020) demonstrated how mul-
tiple-trait random regression (MTRR) model analy-
ses involving MBW could be adapted to dynamically
determine the genetic component of dBW as required
to derive genetic RFI (gRFI) across various stages of
lactation. Here gRET is defined by partial regression
relationships between DMI and the energy sink traits
at the genetic, rather than phenotypic, level. Because
any available daily records can be readily incorporated
into a MTRR analysis and do not need to match up by
DIM between the various component traits in a MTRR.,
this development from Islam et al. (2020) avoids the
need for interpolated records to determine weekly (or
from other broader timeframes) records as required to
derive a dBW. Furthermore. the uncertainty due to dif-
ferences in recording frequencies is formally accounted
for in a MTRR when genetically evaluating dBW and,
hence, gRFI. A multiple-trait model also avoids the
biases implicit with regression on covariates that are
potentially characterized by substantial measurement
error, especially dBW (Lu et al., 2015; Tempelman and
Lu, 2020).

Several studies have used single-trait random regres-
sion models or MTRR to dynamically model heritabili-
ties of DMI or RFI across lactation: however, to our
knowledge. most studies have focused on data from
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primiparous cows. Exceptions have been studies which
combine both primiparous and multiparous cows to-
gether into one analysis, including those that involve a
subset of the data used in the current study (Spurlock
et al., 2012; Tempelman et al., 2015) or studies that
have not considered genetic effects (Martin et al., 2021).

The primary objective of this study was to use the
recent MTRR developments provided in Islam et al.
(2020) to determine stage of lactation specific genetic
parameters for day-specific heritabilities, partial regres-
sion relationships, and genetic correlations involving
RFI, IS, and their core traits with separate analyses
conducted for primiparous and multiparous cows. We
also set out to use MTRR models to more reliably es-
timate genetic parameters for lactation-wise measures
of these traits.

MATERIALS AND METHODS

Data Sources, Recording, and Editing

Records on DMI, milk yields (MY), fat (F%),
protein (P%), and lactose (L%) components of milk,
and BW were collected from Holstein cows at 5 dif-
ferent research stations from 50 to 200 DIM between
2007 and 2020. These research stations were the Ani-
mal Genomics and Improvement Laboratory (AGIL;
Beltsville, MD), lowa State University (ISU; Ames,
[A), Michigan State University (MSU; East Lansing,
MI), University of Florida (UF; Gainesville, FL), and
the University of Wisconsin-Madison (UW; Madison,
WI). Recording frequencies on DMI and MY were
typically daily whereas recording frequencies for all
other traits (BW, F%, P%, and L%) varied among dif-
ferent research stations. The MilkE was calculated as a
function of MY, F%, P%, and L% using the expression
provided in Tempelman et al. (2015). Given that L%
was not recorded at AGIL, all missing L% values were
set to 4.85%. Although the emphasis in this paper is
on the use of daily data, the data on MBW, DMI. and
MilkE were edited and also converted to weekly records
using procedures outlined in Tempelman et al. (2015).
A detailed summary of number of cows and number
of daily records on each trait across the 5 research
stations is provided in Table 1. There were a total of
37,268 and 46,283 daily records on BW, 165,445 and
154.270 daily records on DMI, 170.990 and 157,542
daily records on MY, and 32,238 and 39,656 records
on F% recorded on 2.532 primiparous and 2,379 mul-
tiparous cows, respectively. The number of P% and L%
records were within 0.01% of the total number of F%
records with the exception of L% for AGIL as previ-
ously noted. Across both primiparous and multiparous
cows, there were a total of 4,233 unique cows. Sum-
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mary statistics for both daily MBW, DMI, and MilkE
are presented in Table 2. Here, 312 multiparous cows
had records across multiple lactations beyond first lac-
tation and 1,024 cows had multiple lactations across
all lactations including first lactation. Pedigrees going
back 4 generations and genotypes were obtained from
Council of Dairy Cattle Breeding (Bowie, MD) for all
cows with records. No animals were used in this study,
and ethical approval for the use of animals was thus
deemed unnecessary.

Statistical Analysis

The software WOMBAT (Meyer, 2007) was used for
all quantitative genetic analyses. To explore the ap-
propriate degree of the polynomial to specify for the
random effects specifications within the MTRR model
for each particular core trait (i.e., MBW, MilkE, and
DMI), we first fitted univariate random regression mod-
els to each individual trait, separately for primiparous
and multiparous animals.

We defined 19 environmental subclasses based on
the intersection of 4 time blocks, 2007 to 2010, 2011
to 2013, 2014 to 2016, and 2017 to 2020, with the 5
research stations (no data were available from MSU
during 2007-2010). The statistical model used for pri-
miparous cows was as in Equation [1].

Yijkim = €nv; + by AC; + Z o1l Zgin, + Z 0@ Zgim
+Z g:ﬂpsizsim + Tk(j) + dl(j) + Ez'jk.lm‘

[1]

Here iy, is the response at DIM m on cow 7 on ration
k during testdate (i.e., recording date) / within environ-
ment j, whereas z,, is the Legendre polynomial on DIM
m on cow i for random intercept or polynomial s such
that s = 0 denotes the intercept. Also env; is the fixed
effect of environmental subclass j, b, is the regression
coefficient on AC; or age at calving for cow 4, and b, is
the sth order fixed regression coefficient on Legendre
polynomial z;, specified up to fifth order for the jth
environment.

For random effects, a,; and p,, are the sth order ran-
dom regression coefficients of additive and within-lac-
tation permanent environmental effects, respectively,
for cow i specified up to order ¢. Furthermore, 7y is
the random effect of diet or ration k nested within en-
vironment j whereas dy, is the random effect of testdate
I nested within environment j. Finally, ¢;;,, is the ran-
dom residual effect at DIM m on cow i eating ration k
during testdate [ within environment j. Note that the
additive random regression coefficients across all cows
are specified to be multivariate normal with null mean
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Table 1. Number of cows and number of records of DMI, BW, and milk yields and fat percentages for primiparous and multiparous cows by research station

DMI records BW records Milk yield records Fat percentage records

Number of cows

Multiparous

Primiparous

Multiparous

Primiparous

Multiparous

Primiparous

Primiparous  Multiparous Primiparous Multiparous

Station'

4,099

6,714
6,712
6,401

25,060
28,560
18,544
25,423
59,955

157,542
University of Florida; UW

47,603
55,419
17,738
16,405
33,825

170,990

Michigan State University; UF

3,719

23,912
26,153
18,521
25,580
60,104

154,270
Towa State University; MSU

45,643
52,174
17,839
16,267
33,522

165,445

663 416

AGIL
ISU

3,763

7,132
12,003
12,569
39,656

6,177
6,234
32,238

8,130
7,666
12,668

347
249
430
937

67
261
309
532

MSU
UF

uUw

5,085
37,268

TOTAL
'AGIL

2,379

2,532

University of Wisconsin.

Animal Genomics Improvement Laboratory; ISU =
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(0.27)
4.89
(0.20)

(4.64) (0.65) (0.25)

University of Florida, UW

(8.36)

(73.62)
Michigan State University, UF

isconsin.

University of W

Towa State University, MSU =

Animal Genomics Improvement Laboratory, ISU

'ACIL

and variance-covariance matrix A ® G. Here A is the
pedigree relationship matrix and G is the (¢ + 1) x (¢
+ 1) genetic covariance matrix between the Legendre
polynomial coefficients with ® being the Kronecker
product. Similarly, the within-lactation permanent en-
vironmental regression coefficients are specified to be
multivariate normal with null mean and variance-cova-
riance matrix I, @ P, where L, isan identity matrix of
order n,. for n,. being the number of cows and P being a
(g+ 1) x (¢ + 1) covariance matrix between the cor-
responding random regression coefficients. Both {ry}
and {dy;} were treated as homoscedastic independent
random effects whereas residuals {s;,,} were also
specified to be independent but heteroskedastic across
6 different DIM subeclasses: (1) 50 to 69 d, (2) 70 to 89
d, (3) 90 to 109 d, (4) 110 to 129 d, (5) 130 to 159 d,
and (6) 160 to 200 d.

Consider trait 1 (MBW), trait 2 (MilkE), and trait 3
(DMI) as being the core traits of feed efficiency. Sepa-
rate multiple-trait model analyses were conducted for
each parity class on the 3 core traits specifying g = 2
for both random additive and permanent environmental
effects in both instances. The model for each trait for
primiparous cows was based on Equation [1], whereas
the following extensions for Equation [1] were specified
for multiparous animals. First, a fixed classification ef-
fect for parity (2, 3, and 4+) was considered. Second,
a random between-lactation permanent environmental
effects term was specified as independent cow effects to
accommodate multiple lactations on cows (Tempelman
et al., 2015) recognizing that permanent environmental
effects are more strongly correlated within lactation
than between different lactations on the same cow.

We specify the additive genetic effects on any cow i
for trait ¢ as a; being a 3 x 1 vector of random inter-
cept, linear and quadratic coefficients on trait ¢, t = 1,
2, 3. Hence, the variance-covariance matrix of all ge-

/
. / ! ! .
netic effects a; = [aﬂ A9 313] on all 3 traits for alny cow

iis G where G is now a 9 x 9 matrix of genetic vari-
ances and covariances for the intercept, linear and
quadratic coefficients on each of MBW, MilkE, and
DMI. Across all cows then. the variance-covariance
matrix of genetic effects is A ® G. Similarly, the vari-
ance-covariance matrix for the within-lactation perma-
nent environmental effects for all 3 core traits on any
cow ¢ is P, where P is the 9 x 9 matrix of permanent
environmental (co)variances for the intercept, linear
and quadratic coefficients on each of MBW, MilkE, and
DMI. Across all cows then, the variance-covariance
matrix of the within-lactation permanent environmen-
tal effects is I, ®P.

Because of the large number of estimated variance-
covariances already defined in G and P, the between-
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!
B B : A
trait covariances for ration effects r =[r/ 1, r;] and for

testdate effects d:[d{ d;, dér were set to zero. For
multiparous cows, a 3 X 3 (co)variance matrix C was
specified for the between-lactation permanent environ-
mental effects for the 3 traits at all DIM (i.e., random
intercepts only). We similarly extended the heteroske-
dastic residuals from the univariate models to specify
heterogeneous residual (co)variances for the 3 traits
where the residual (co)variances were R, v=1, 2, ...,
6 for the same 6 DIM subclasses as the univariate mod-
els: 50-69 d, 70-89 d, 90-109 d, 110-129 d, 130-159 d,
and 160-200 d.

5958

Derivation of (Co)variances for BW Change
for Each Day of Lactation. The genetic and perma-
nent environment (co)variance components of dMBW
with other traits for each day were obtained from the
cow-specific changes of the fitted MBW curve using
first differences (Islam et al., 2020). First, the Legendre
polynomial coefficients were used to define the DIM-
specific genetic merit of MBW, MilkE, and DMI. Not-
ing that G and P are each 9 x 9 matrices ordered by
degree of polynomial (intercept = 0, linear = 1, and
quadratic = 2) within each trait (MBW, MilkE, and
DMI, respectively), the contrast matrix (®(y)) contain-
ing Legendre polynomials coefficients for DIM m were
defined as

Z(m).0 Z(m).1 Zim).2 0 0 0 0 0 0
B, — 0 0 0 Zn).0 Zm)a Hmyz O
(=) 0 Zmy1 = Hm1)1 Zm)2 —Fm-n2 0 0 0 0 0 2]
0 0 0 0 0 0 Zm).0 Zim)a Z(m).2

Here 7, 0, Z(m).1, and z(,, » are, respectively, the Legendre intercept, linear, and quadratic coefficients for DIM m.

Note that rows 1, 2, and 4 of @, in Equation [2] are used to define the genetic merit of MBW, MilkE, and DML,

respectively, for animal 7 at DIM m when multiplied by the corresponding solutions for animal 7 in a. The third

row of @, is used to derive the DIM-specific genetic merit of dMBW based on the first differences (Islam et al.,

2020) in the respective coefficients between DIM m and m — 1 with the exception of DIM 50, which was specified

to be the same as that for DIM 51. Hence, there were 151 DIM-specific ®,,) matrices (i.e., from DIM 50-200).
The genetic (co)variance matrix |G| at DIM m was then calculated to be

G (m) = P (m) Go (m), s
where

2

9 MBW(m) Tg MBW MilkE(m) e MBW AMBW(m) ¢ MBW DMI(m)

2
T g MBW MilkE(m) T MilkE(m) Ty MilkE,dMBW(m) 7 g MilkE,DMI(m)

m) 2
O MBW AMBW(m) 7 g MilkE,dMBW (m) T g dAMBW(m)

3

T g AMBW,DMI(m)

2
T MBW,DMI(m) T MikEDMI(m) g, dMBW.DMI(m) Ty DMI(m)

these 4 traits and specific to DIM m was obtained as
Piw = PmPPm)"

defines the DIM m specific genetic (co)variances be-

tween the 4 traits MBW, MilkE, dMBW, and DMI,

respectively. In a virtually identical manner, the 4 x 4
permanent environmental (co)variance matrix between
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The contrast matrix used to convert DIM subclasses
specific between-trait residual (co)variance matrices
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is provided as T in Equation [4] as per Islam et al.
(2020):

1 00000
1
T — 0 0 00 0‘ 4]
-1 0 0 1 00
0 01000

That is, R, = TR,, _ ,,T" was used to derive the resid-
ual (co)variance matrix for the 4 traits MBW, MilkE,
dMBW, and DMI, respectively, at DIM m by defining
R, 1, = diag[R,(, - 1). R,m] as a block diagonal
matrix whereby DIM m — 1 and m defines which
subclass(es) v and v, respectively, of the 6 possible
residual (co)variance subclasses for the 3 core traits are
defined as the first and second blocks, respectively, in
R‘m —1,m-

For the multiparous cow analyses, only random in-
tercepts were specified for the covariance matrix C be-
tween the core traits. The between-lactation permanent
environmental (co)variance matrix C* for the 4 traits
MBW, MilkE. dMBW. and DMI, respectively, at DIN
m, was then also constant such that zero (co)variances
were specified for any term involving dMBW with the
remaining components (rows and columns 1, 2, and 4)
being the elements of C:

2
0. MBW OovpwMike O Ccvpw.pur
2
ox — T MBW MilkE T ¢ MilkE 0 O, Mike DM [5]
0 0 0 0
U 2
T MBWDMI ¢ MilkE,DMI T, DMI

We derived the phenotypic (co)variance matrix [V,,]
for DIM m as follows: V,, = G, + P,y + Ry, for
primiparous cows and V) = G, + Py + Rt C*
for multiparous cows. We included neither testdate nor
ration variance components in the specification of Vi
to facilitate more straightforward comparisons with
other studies as dairy breeders historically have treated
management effects as fixed.

Estimation of DIM-Specific Regression Coef-
ficients. We partition the matrix G,, from Equation
(3] into a scalar gg:])mmmce due to the source trait
(DMI), a 3 x 3 matrix Ggﬂ( gk due to the sink traits
(MBW, MilkE, dMBW), and a 3 x 1 covariance com-

(m) hetw and sink traits.
ponent g4 ... between source and sink traits. In
other words, we rewrite Gy, as in Equation [6]:
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e 8
G _ SIIK,SIL SIIK,source 6
(m) (m) (m) : 6]

!
gsiuk,source gsource,saurce

such that, for example, (m)

_ 2 .
Jsource source — Ug,DMI(m) from
Equation [3]. We also partition V,, in a similar man-

ner:

(m) (m)
v o Vsink,sink Vsink source [ 7]
(m) =1 (m) L) ‘
sink,source source,source

Because RFT and I'S are linear functions of energy sink
traits and DMI, Tempelman and Lu (2020) demon-
strate how both FE traits can be derived from a multi-
ple-trait analysis involving the core traits although
their original derivation did not address MTRR involv-
ing records across different DIM nor a formal incorpo-
ration of AMBW as illustrated later for gRFI by Islam
et al. (2020). A first step is to derive the corresponding
partial regression coefficients required to determine ei-
ther genetic or phenotypic versions of those traits. The

DIM-specific partial genetic (bg,m)) and phenotypic re-

gression (b;(l)m}) coefficients were obtained as follows:

-1
b(gm) - [Gf(:illll%(,sinkJ gi(i?lﬂi,sink [8]
and
1
bg'Jm) - [Vs,{il;?lz,sinkJ vgﬁi’(,source [9]

for m = 50, 51. ..., 199, 200, where

b = [bglja)wa b_gﬁa)'ﬂw bangBw]'
and
4 e s ]

are 3 x 1 vectors of genetic and phenotypic partial
regression coefficients, respectively, of the source trait
DMI on the key sink traits MBW, MilkE, and dMBW,
respectively, at DIM m.
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The corresponding DIM-specific genetic variance-co-
variance matrix G, was then augmented to a 6 x 6
matrix Kgm)G(m)K_(qm),
includes the partial regression coefficients to derive
gRFT and genetic FS (gF'S) at DIM m within its fifth
and sixth rows, respectively (Tempelman and Lu,
2020), as per Equation [10].

where the contrast matrix Kgm)

1 0 0 0
0 1 0 0
0 0 1 0
K" = 0 0 - [10]
T M P
0 _E’_gﬂztw _bg(rfgl)MBW 1
210 Zrq Zp 9
0 0 0
&, =
0 Zo001 = 2501 22002 — Zs0.2
0 0 0
200 200
Here  zp,= Zm:mz(m)_u, Zpy = Zm:m ()10 and

200
2 = Zm:SUZ(m)Q represent the sum of the Legendre

polynomial coefficients for intercept, linear trend, and
quadratic trend, respectively, from DIM 50 to 200. In a
similar manner, we obtained the (co)variance matrix
for the lactation-wise within lactation permanent envi-
ronmental effects of MBW, MilkE, DMI, and dMBW
across the entire period as Py = ®,P®,.

For multiparous cows across the entire range of DIM,
the variance-covariance matrix for the lactation-wise
between-lactation permanent environmental effects is
Cr = LC*L’, where C* is as defined in Equation [5]
andL=1511,. Here.R* = d R, + d,R, +d,;R,; + ...+ d;R;,
where Ry, R,..... R are the 6 different subclasses of
residual (co)variances for the core traits MBW, MilkE,
and DMI as characterized previously with d;, d;, ..., dg
being the number of days within the 6 residual sub-
classes, respectively. We write the components of R* as
follows:

2
nBw IvBw MilkE  'MBW,DMI
* _ 2
R* = nipw miike MvilkE IMilkE,DMI |- [12]
2
vpw,DMI  IMilkE, DMT Nt
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In other words, Kgm)G(m)Kgm)' defines the genetic vari-
ance-covariance matrix for MBW, MilkE, dMBW,
DMI, gRFT, and gFS, respectively, at DIM m.

Estimation of Overall Genetic Parameters
from 50 to 200 DIM. We also used another contrast
matrix @1 to determine genetic parameters for all these
traits summed across the entire 50 to 200 DIM as traits
defined on an average or lactation-wise basis would
more likely be a focus of selection and incorporated into
selection indexes. The genetic (co)variance matrix (Gry)
for the total genetic merit of MBW, MilkE., DMI, and
dMBW across 50 to 200 DIM was written as
Gy = ®,G®;, where G is the same as before and

0 0 0 0 0 0
Zro Zpy Zra 0 0 0
0 0 0 0 0 0
0 0 0

[11]

Zro Fry Zrp

The first, second, and fourth rows and columns of the
residual (co)variance (Rp) between the lactation-wise
residual effects of MBW, MilkE. dMBW, and DMI are
composed of the elements of R*. whereas the third row
and columm for lactation-wise AMBW are simply func-
tions of the residual (co)variances for the first (R,;) and
last (Rg) subclasses:

2

vBw IMBW MilkE o, — oy MBW,DMI
2 6 -
R. — IMBW MilkE IhilkE 12— %12 IMike,DMI
ol § b0 6 '
11— 01 12 — 013 O3z T 033 O3 — 03
I I, O — O 2
MBW,DMI MilkE,DMI %13 13 DMI
[13]
Here,
01 Oy O3
Ry =0, 0y 0y
O31 O3 Og3

is the residual variance-covariance matrix for the first
subclass, whereas
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511 512 513
Rs - 512 622 523
513 623 ‘533

is the residual variance-covariance matrix for the last
or sixth subclass. In this way, the phenotypic (co)vari-
ance matrix (V) was calculated for primiparous cows
as Vo = Gp + Pt + Ry whereas for multiparous cows
it was determined as Vy = Gp + Pt + Cr + Rr.
Furthermore, the lactation-wise genetic and phenotypic
partial regression coefficients were computed using
Equations [8] and [9] but this time using the corre-
sponding partitions of Gt and V1. respectively. Finally,
the resulting genetic regression coefficient estimates
were used in an expression identical to that provided in
Equation [10], which we label as Kg. Hence, the lacta-
tion-wise genetic variance-covariance matrix of the 6
traits (MBW, MilkE, dMBW, DMI, gRFI, and gFS)
was defined as KgGTK;{’. Note then that the breeding
values of cow i for the 6 traits on a lactation-wise basis
can be defined as Kg'I)Ta,..

Estimating Standard FErrors. The software

WOMBAT is based on the AIREML algorithm (Meyer,
2007), which provides the average information matrix
for the estimates of G, P, R—R;. and additionally C
for the multiparous analysis. The asymptotic variance-
covariance (AVC) matrix of these (co)variance esti-
mates is thereby based on the inverse of the average
information matrix. In a manner similar to Meyer and
Houle (2013), a total of 100 multivariate normal ran-
dom vectors were drawn from a multivariate normal
distribution with mean vector based on the estimated
(co)variance components and (co)variances based on
the AVC matrix, ensuring that all random draws lead
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to positive definite random draws for G, P, R;-R. and
additionally C for the multiparous analyses. These ran-
dom draws were transformed into elements of Gy,,.

Vi), bg,m), and bgm), for example, to determine approxi-
mate standard errors of their elements and any other
derivative expressions from them such as lactation-wise
or DIM-specific genetic correlations and heritabilities.

RESULTS

A characterization of the number of records by DIM
is provided in Figure 1. Quite clearly, the bulk of the
data on all traits was collected in the first half of the 50
to 200 DIM test period with a substantial drop-off in
number of records, especially for DMI and MY, beyond
150 DIM.

A representative example WOMBAT “par” file used
for conducting the multiple-trait analysis for multipa-
rous cows is provided in Supplemental File S1 (https:/
/doi.org/10.6084/m9.figshare.17291225; Khanal et al.,
2022). We focus the presentation of our results from a
pedigree-based analyses on the use of daily data, given
that it was not possible to fit all 3 core traits simultane-
ously in a genomic-based analysis. However, we also
conducted a genomic-based analysis based on a series
of bivariate MTRR as we further describe later. We
later briefly characterize the differences between the
genomic- and pedigree-based analyses.

There were a total of 158 and 210 different rations
defined for primiparous and multiparous cows, respec-
tively, across the 19 environmental subclasses, in part
because much of the data was generated from nutrition-
al trials as described in Tempelman et al. (2015). As a
proportion of total random effects variability at DIM
= 125d, ration effects accounted for less than 0.3% for

—— BW
— DMI
—— Milk Components

Milk Yield
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.
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Figure 1. Frequency distribution of the number of records for BW, DMI, milk components, and milk yield by DIM for primiparous (A) and

multiparous cows (B).
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Figure 2. Day-specific estimated heritabilities of metabolic BW (MBW), milk energy (MilkE), DMI, and change in MBW (dMBW) between
50 and 200 DIM for primiparous (A) and multiparous (B) cows. Lines represent REML estimates with bands representing asymptotic sampling-

based SE on those estimates.

MBW, between 2 and 3% for MilkE, and between 5 and
8% for DMI across both parities.

Heritability Estimates

The heritability estimates for the energy sink traits
(MBW, MilkE, and dMBW) and DMI using daily data
are presented in Figure 2. The estimated heritabilities
for MBW were consistently high across DIM ranging
rather narrowly between 0.59 to 0.65 in primiparous
cows and from 0.46 to 0.57 in multiparous cows. Both
MilkE and DMI had somewhat lower vet moderate

A

.tyc
()

Heritabili
°

heritabilities that closely tracked each other within the
2 parity classes throughout lactation although MilkE
had slightly higher heritability estimates ranging from
0.30 to 0.38 in primiparous and from 0.13 to 0.24 in
multiparous animals. What seemed particularly intrigu-
ing was that heritability estimates for both these traits
gradually increased from 50 to 200 DIM in primiparous
cows whereas they decreased for both traits in multipa-
rous cows. The estimated heritabilities for daily AMBW
were close to 0 throughout the entire test period.
Estimated heritabilities for the 2 feed efficiency
traits. gRFI and gFS, are provided in Figure 3. The

50 75 100 125

DIM

150 175 200

50 75 100 125

150 175 200

Figure 3. Day-specific estimated heritabilities of residual feed intake and feed saved between 50 and 200 DIM for primiparous (A) and mul-
tiparous (B) cows. Lines represent REML estimates with bands representing asymptotic sampling-based SE on those estimates. gF'S = genetic

feed saved; gRFI = genetic residual feed intake.
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Figure 4. Day-specific estimated genetic partial regression coefficients (l;g) of DMI on metabolic weight (MBW; kg/kgo‘m), DMI on milk

energy (MilkE; kg/Mcal), and DMI on change in metabolic BW (AMBW; kg/kg”™) between 50 and 200 DIM for primiparous (A and B) and
multiparous (C and D) cows. Lines represent REML estimates with bands representing asymptotic sampling-based SE on those estimates.

heritabilities for gRFI ranged from 0.05 to 0.07 in pri-
miparous cows and from 0.03 to 0.13 in multiparous
cows. Whereas heritabilities for gRFI were relatively
constant across DIM in primiparous cows, they were
higher in early lactation for multiparous cows. The
estimated heritabilities for gFS ranged from 0.11 to
0.17 for primiparous cows and from 0.10 to 0.17 for
multiparous cows.

Estimated Partial Regression Coefficients

Genetic. Estimated genetic partial regression coef-
ficients of DMI on MilkE and on MBW are provided
for primiparous cows in Figure 4A whereas that of
DMI on dMBW are provided in Figure 4B. Analogous
plots are provided for multiparous cows in Figure 4C
and 4D, respectively. The estimated partial regression
coefficients on MBW were more stable across DIM in

Journal of Dairy Science Vol. 105 No. 7, 2022

multiparous cows (0.12-0.14 kgékgo'm) than in pri-
miparous cows (0.11-0.16 kg/kg"™) with no obvious
trend across DIM. For partial regressions of DMI on
MilkE, the estimated coefficients varied from 0.45 to
0.68 kg/Mecal in primiparous cows, abruptly increas-
ing after 130 DIM. The corresponding estimated coef-
ficients in multiparous cows changed more erratically
across lactation, varying from 0.36 to a peak of 0.61
kg /Mcal near 110 DIM. Finally, the estimated genetic
partial coefficients of DMI on dMBW were also erratic
ranging from —19.8 to 26.5 kg/kacgo'-"5 In primiparous
animals, generally decreasing with advancing DIM
whereas the corresponding range for multiparous cows
was from —2.8 to 32.6 kg/kg0'75, peaking near 100 DIM.
These estimated genetic regression coefficients of DMI
on dMBW should be interpreted with caution because
the estimated heritabilities for AMBW were near zero
for all DIM, as previously indicated. Hence, the cor-
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Figure 5. Day-specific estimated phenotypic partial regression coefficients l;p of DMI on metabolic BW (MBW; kg/ke”™), DME on milk

energy (MilkE; kg/Mcal), and DMI on change in MBW (dMBW; kg/kg"™) between 50 and 200 DIM for primiparous (A and B) and multiparous
(C and D) cows. Lines represent REML estimates with bands representing asymptotic sampling-based SE on those estimates.

responding animal specific genetic effects for dMBW,
which effectively serve as “covariates” for those partial
genetic regressions, were tightly varying around 0.
Phenotypic. Estimated phenotypic partial regres-
sion coefficients of DMI on MilkE and on MBW are
provided in Figure 5A and of DMI on dAMBW are pro-
vided in Figure 5B for primiparous cows. Similar plots
are provided for multiparous cows in Figure 5C and D,
respectively. In general, these phenotypic partial regres-
sion coefficients were more stable than the correspond-
ing genetic regression coefficients in Figure 4. For DMI
on MBW, the partial phenotypic regression coefficients
had averages across DIM that were similar to but less
variable relative to the partial genetic coefficients. This
similarity may be expected given the large heritability
for MBW: ie.. any genetic versus phenotypic partial
relationships involving MBW are likely to closely mir-
ror each other relative to other less heritable traits.

Journal of Dairy Science Vol. 105 No. 7, 2022

For DMI on MilkE. the partial phenotypic regression
coefficients steadily increased from 50 to 200 DIM,
ranging from 0.22 to 0.55 kg/Mecal for primiparous
cows and from 0.28 to 0.50 kg/Mcal for multiparous
cows. The estimated phenotypic partial regression coef-
ficients of DMI on dMBW were very stable and close
to zero ranging from —0.009 £ 0.001 to 0.07 & 0.01
kg /kg"™ for primiparous cows and from —0.02 + 0.008
to 0.02 + 0.005 kg/kg"™ for multiparous cows. It is
important to note that these coefficients are expressed
relative to the overall positive regression relationships
generally inferred between DMI on dMBW when fixed
effects such as those in Equation [1] (e.g., environmen-
tal subclass specific intercepts and regressions on DIM)
are not typically adjusted for. That is, the “covariate”
for dMBW is based on differences involving a smaller
range of random effects relative to phenotypic differ-
ences driven by fixed effects. Hence these estimates
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Figure 6. Estimated genetic correlations between days for genetic residual feed intake (gRFI; A) and genetic feed saved (¢FS; B) for pri-

miparous cows between 50 and 200 DIM.

should not be interpreted in the same way as classically
determined partial regression coefficients on dMBW
per Tempelman et al. (2015), for example.

Estimated Genetic Correlations Within Lactation

Estimated genetic correlations between DIM within
50 to 200 d for the core traits of gRFI and gF'S. namely
DMI, MBW. and MilkE, are provided as heat maps
for primiparous cows in Supplemental Figure S1, in-
cluded in Supplemental File S2 (https://doi.org/10
6084 /m9.figshare.17291225; Khanal et al., 2022), and
for multiparous cows in Supplemental Figure S2 (https:
//doi.org/10.6084/m9.figshare.17291225; Khanal et
al., 2022). As expected, genetic correlations gener-
ally decreased as intervals between corresponding DIN
increased. These correlations were consistently high
(>0.9) between DIM for both MBW and DMI within
either parity class. Genetic correlations between distant
DIM for MilkE were lower, being as low as 0.75 for
primiparous cows and 0.50 for multiparous cows be-
tween 50 and 200 DIM. Estimated genetic correlations
between DIM for gRFI and gFS for primiparous and
multiparous cows are provided in Figures 6 and 7, re-
spectively. Genetic correlations between DIM for gRFI
fell to as low as 0.05 in primiparous cows and as low as
0.25 in multiparous cows. Genetic correlations between
DIM for gFS were generally higher than they were for
¢RFI, falling to as low as 0.68 in primiparous cows
and as low as 0.54 in multiparous cows. The higher
within lactation genetic correlations observed for gF'S
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relative to gRFI was likely due to the contributing ef-
fect of MBW. Estimated genetic correlations between
the 3 core traits across the test period are provided in
Supplemental Figure S3 (https://doi.org/10.6084/m9
figshare. 17291225; Khanal et al., 2022), and genetic
correlations between gFS and gRFI with MBW and
DMTI are provided in Supplemental Figure S4 (https:/
/doi.org/10.6084/m9.figshare.17291225; Khanal et al.,
2022). Here, DMI had consistently large positive genet-
ic correlations with both MBW and MilkE throughout
the test period. Estimated genetic correlations between
MilkE and DMI hovered just above 0 in primiparous
cows and declined from slightly positive to moderately
negative values over the 50 to 200 DIM test period in
multiparous cows.

Genetic Parameters for Lactation-Wise Measures

Although MTRR models allow the determination of
DIM-specific genetic parameters, the total or lactation-
wise genetic merit of gRFI, gFS, and the core traits
across the 50 to 200 DIM test period might be consid-
ered to be a primary focus for genetic selection. The
estimated lactation-wise heritabilities of these traits
are provided in Table 3. These estimates for MBW
did not change substantially from their respective day-
specific heritabilities, ranging from 0.59 for multipa-
rous cows to 0.67 for primiparous cows. However, for
MilkE and DMI. there were substantial increases from
DIM-specific to lactation-wise heritabilities as well as
substantial differences in lactation-wise heritabilities
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Table 3. Estimated heritabilities of lactation-wise (50-200 DIM)
genetic residual feed intake and genetic feed saved and their component
traits

Heritability
Trait Primiparous Multiparous
Metabolic BW 0.67 + 0.05 0.59 = 0.07
Milk energy 0.43 + 0.06 0.22 + 0.04
Change in metabolic BW 0.11 £+ 0.05 0.13 £ 0.05
DMI 0.57 + 0.05 0.28 = 0.05
Genetic residual feed intake 0.25 £+ 0.08 0.17 £ 0.05
Genetic feed saved 0.41 £+ 0.06 0.35 £ 0.06

between primiparous and multiparous cows. For ex-
ample, we estimated a heritability of 0.43 £ 0.06 for
MilkE in primiparous cows whereas the corresponding
estimate for multiparous cows was 0.22 + 0.04. Simi-
larly, the heritability estimate for DMI was 0.57 == 0.05
for primiparous cows versus 0.28 + 0.05 for multiparous
cows. A substantial contributor to the lower heritability
estimates in multiparous versus primiparous cows was
the additional variation due to between-lactation per-
manent environmental effects modeled for multiparous
cows, accounting for anywhere between 0.13 (for DMI)
to 0.23 (for MilkE) of the total phenotypic variance
(results not reported). A particularly intriguing result
in Table 3 was that the estimated heritabilities for
lactation-wise dMBW were substantial, being 0.11 +
0.05 for primiparous cows and 0.13 4+ 0.05 for multipa-
rous cows suggesting that genetic variation for AMBW
across a broad period of lactation is important in sharp

A gRFI B
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contrast to the near-zero daily heritabilities for dAMBW
previously reported in this paper.

We also estimated genetic correlations of DIM-specific
genetic merit with lactation-wise genetic merit for both
¢RFT and gFS between 50 and 200 DIM. These correla-
tions are illustrated in Figure 8. In general, correlations
were consistently greater than 0.9 for both traits up
until 125 DIM although they tended to drop sharply
after 140 d in primiparous cows and after 130 d in
multiparous cows. These genetic correlations dropped
to as low as 0.66 for gRFT and to 0.75 for gF'S, both at
200 DIM.

Summary of Analyses Based on the Use of Weekly
Data and Genomic Information

We briefly summarize similar analyses based on the
use of weekly interpolated data, again using only pedi-
gree information for genetic modeling, in Supplemental
Figures S5 to S12 provided in Supplemental File S3
(https://doi.org/10.6084/m9.figshare.17291225; Kha-
nal et al., 2022). In general, heritabilities for MilkE
and DMI were slightly higher for analyses of weekly
(Supplemental Figure S5) as opposed to daily data
for primiparous cows whereas weekly based estimates
for ¢gRFT were substantially higher ranging from 0.05
to 0.22 in primiparous cows and from 0.12 to 0.18 in
multiparous cows (Supplemental Figure S6). Similarly,
weekly gF'S had higher heritabilities, ranging from 0.15
to 0.32 in primiparous cows and from 0.23 to 0.25 in
multiparous cows. Trajectories on estimated herita-

gFS
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Figure 7. Estimated genetic correlations between days for genetic residual feed intake (gRFI; A) and genetic feed saved (gFS; B) for mul-

tiparous cows between 50 and 200 DIM.
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Figure 8. Estimated genetic correlation of genetic feed saved (gF'S) and genetic residual feed intake (gRFI) with average residual feed intake
and feed saved over 50 to 200 DIM for primiparous (A) and multiparous (B) cows. Lines represent REML estimates with bands representing

asymptotic sampling-based SE on those estimates.

bilities across DIM were particularly different for DMI,
¢RFI., and gFS, all showing a downward trend with
weekly data as opposed to daily data. Partial genetic
regression coefficients involving MBW were slightly
higher using weekly as opposed to daily data whereas
partial genetic regression coefficients involving analysis
of weekly MilkE were of comparable magnitude to those
based on daily data (Supplemental Figure S7). Infer-
ences on partial genetic regressions involving dMBW
using weekly data were rather erratic whereas partial
phenotypic regression coefficients were similar to those
determined for daily data (Supplemental Figure S8).
Genetic correlations between DIM for the 3 core traits
tended to be substantially higher with weekly data
(Supplemental Figures S9 and S10) compared with
daily data with similar observations being made for
gRFT and gF'S (Supplemental Figures S11 and S12).
We also used pairwise bivariate genomic analyses to
determine the same genetic parameters as we did with
the pedigree analysis. Key results from those analyses
along with the brief description of methods are present-
ed in Supplemental File S4 (https://doi.org/10.6084/
m9.figshare.17291225; Khanal et al., 2022). In all cases,
estimated genetic parameters were remarkably similar
to those provided based on the pedigree-based analysis.
Due to the increased complexity of averaging estimates
and hence, average standard errors across the various
pairwise bivariate analyses. approximate standard er-
rors were not provided in the corresponding figures.

DISCUSSION

The use of RFI in genetic evaluations has been
typically determined using a 2-stage modeling process
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(Tempelman et al., 2015) whereby DMI is regressed
on energy sinks (MilkE, MBW, dMBW, or dBW) to
derive a pRFI. This process typically requires con-
tinuous recording of these traits over various periods of
time (e.g., weekly, monthly) or the use of interpolated
data for traits (e.g., BW) that are recorded much less
frequently. Any use of interpolated data potentially
leads to a differential understating of uncertainty for
RFI determinations. Furthermore, the 2-stage classical
regression approach to RFI modeling (Tempelman et
al., 2015) does not facilitate the use of data on cows
when one or more of the core traits defining RFT is
completely missing.

To sustain reliable future genetic evaluations of RFI
or FS, it is important to develop quantitative genetic
analyses strategies that use as much reliable DMI data
as are available under a wide range of representative
production environments. We have pursued a MTRR
analysis in this paper to model genetic variability in
feed efficiency traits such as gRFI and gF'S, as well as
its core traits, DMI, MBW, and MilkE, across a lacta-
tion. From a modeling perspective, the MTRR model
has a substantial advantage over the classical regression
approach in that it more elegantly incorporates the use
of sparsely recorded daily data. The recent modeling
developments outlined in Islam et al. (2020) further
facilitate the direct incorporation of instantaneous
dAMBW or dBW, at least from a genetic regression per-
spective, while accounting for the uncertainty due to
highly variable differences in recording frequencies for
BW. Whether the model includes dMBW or dBW is
inconsequential because MBW is almost a linear func-
tion of BW over the normal range of Holstein cow BW
(Tempelman and Lu, 2020).
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The genetic regression implied with the use of the
MTRR is more appealing than phenotypic regression
used to derive pRFT for several reasons. First, gRFI is
a trait constructed to be genetically uncorrelated with
MBW, MilkE, and dMBW such that direct selection on
gRFI should not lead to unintended consequences on
these energy sinks. Furthermore, phenotypic regression
used to derive pRFI conflates nongenetic relationships
with genetic relationships between traits whereas we
are only concerned with the latter for genetic selection.

The use of MTRR modeling requires special care and
relatively large data sets to be able to ensure conver-
gence and reliable estimates. As one example. an earlier
analysis of a subset of the data set used in this study
was provided in Tempelman et al. (2015) whereby only a
random intercept for additive genetic effects was fitted.
In other recent cases, only random intercept and linear
coefficients have been fitted (e.g., Islam et al., 2020).
The true genetic variability across lactation for some
traits might be simple enough to capture with random
intercepts or with random intercepts plus random linear
regressions. Higher-order random regressions are often
not fitted because of convergence problems or because
these terms are deemed to be not significant in small
data sets. Based on likelihood ratio tests involving uni-
variate analyses on our own data (results not reported),
we determined that up to second-order random regres-
sion specifications were sufficient for additive genetic
effects on all 3 core traits but that third-order random
regression specifications for permanent environmental
effects might be worth pursuing. However, we were not
able to successfully able to model beyond second order
for both sets of random effects in a multiple-trait set-
ting.

If one specified only up to a linear random coeffi-
cient on genetic effects for MBW, the genetic merit for
dMBW on a cow would be defined to be the same for
any interval of the same length because of the use of first
differences. Specifying only random intercepts for MBW
would not allow modeling of AMBW. Although we were
able to fit up to a second-order random regressions on
both additive and permanent environmental effects for
all 3 core traits, the implications of specifying only up
to first order terms are probably less serious for more
“linear” portions of the lactation curve (i.e., 50-200
DIM) or if primary attention is focused on lactation-
wise genetic merit across the test period. Another often
overlooked aspect of MTRR is the asymptotic correla-
tions of the variance component estimates as derived
from the average information matrix. For example, we
discovered (results not reported) using the AVC matrix
that the asymptotic correlations between the additive
genetic (a) with the permanent environmental effects
(p) for their respective variance component estimates
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of intercept, linear, and quadratic terms for MBW as
well as of intercepts for MilkE and DMI were all less
than —0.80. This implies, for example, that if one failed
to model the quadratic variance component for p on a
particular trait, the corresponding quadratic variance
component estimate for a would likely be inflated for
that same trait. Other energy sinks (e.g., BCS and
its change) might be accounted for in deriving gRFI
although that would also potentially exacerbate conver-
gence problems in a MTRR.

Our estimates for heritabilities for the component
traits of gRFI and gF'S are well within the range of
other recent feed efficiency studies conducting various
forms of random regression analyses even though such
studies typically involved substantially smaller numbers
of cows from other breeds or countries. For example,
weekly heritability estimates of BW are typically mod-
erate to high (0.49-0.72) as previously reported by Li et
al. (2018) and Islam et al. (2020) althonugh Manzanilla
Pech et al. (2014) reported lower estimates ranging
from 0.25 to 0.48. Similarly, our range of heritability
estimates (0.23-0.28) for DMI fell well within the range
(0.18-0.40) reported in recent previous studies (Manza-
nilla Pech et al., 2014; Liinamo et al., 2015; Negussie
et al., 2019; Islam et al., 2020). Finally, our heritability
estimates (0.30-0.38) for MilkE in primiparous cows
not only fell within the range of those recently report-
ed (Islam et al., 2020; Manzanilla Pech et al., 2014;
Negussie et al., 2019) but also generally demonstrated
a similar trajectory with a slight rise in estimates from
earlier to later stages of lactation. Our near-zero es-
timates of daily heritabilities for dMBW agreed with
conclusions drawn from Lu et al. (2015) and from Islam
et al. (2020) although the latter did report estimates of
weekly heritabilities approaching as high as 0.05.

Our heritability estimates for the analysis of daily
gRFT were slightly lower compared with those previ-
ously reported (Islam et al., 2020) including an earlier
study using a subset of our own data (Tempelman et
al., 2015). Yet all of these studies were based on the
use of weekly data which we have demonstrated tends
to lead to somewhat higher heritability estimates com-
pared with the use of daily data. Although analyzing
daily data from a substantially smaller data set involv-
ing Nordic Red cows, Negussie et al. (2019) determined
that estimated heritabilities of pRET can approach as
low as 0.07. Our estimated heritabilities for gRFT based
on the use of weekly data closely followed estimates on
pRFT from Li et al. (2017) also derived from weekly
data. To our knowledge, nobody has previously con-
ducted a study involving a random regression analysis
involving F'S.

Our daily data-based estimates for within-trait ge-
netic correlations between DIM for the core traits of
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feed efficiency were generally rather high relative to
previous studies. Negussie et al. (2019) found that
genetic correlations for each of DMI, MilkE. and RFI
across DIM deviated substantially from unity. Negussie
et al. (2019) specifically found that genetic correlations
between early and later lactation DMI bhecame nega-
tive after DIM 160 and onwards, suggesting that DMI
at the early stages of lactation is a weak predictor of
the trait at mid or late stages of lactation. Manzanilla
Pech et al. (2014) determined that DMI within early
lactation tended to have low genetic correlations with
DMI in mid to late lactation with correlations being as
low as —0.5. In spite of what we observed for the core
traits, our estimates of genetic correlations between
eRFT across DIM suggest that ¢gRFI may be a differ-
ent trait between 50 and 200 DIM given a near-zero
genetic correlation, especially for primiparous cows.
Our results also agree with those provided by Li et al.
(2017), in which they determined genetic correlations
between DIM approaching as low as —0.29 for gRFT in
Danish Holstein cows although their study involved a
wider range of DIM than what we studied.

Our genetic regression coefficients were rather er-
ratic compared with those previously reported in Islam
et al. (2020). A couple of reasons may explain these
differences. First, our estimated heritabilities for DIM-
specific AMBW were very close to zero whereas Islam
et al. (2020) estimated heritabilities for dBW as high
as 0.05. A higher heritability on dAMBW should lead to
a more stable and less erratic genetic partial regression
coefficients on dMBW. Second, Islam et al. (2020) did
not model variance components for quadratic coeffi-
cients on p but did so for a which could have con-
tributed to the larger heritability, given the strongly
negative asymptotic correlation between estimates of
quadratic variance components of a and p as previously
noted from our own analyses. Our estimated pheno-
typic partial regression coefficients of DMI on MilkE
were remarkably similar in trend to those reported both
by Li et al. (2017) and Islam et al. (2020) for energy
corrected milk whereby the coefficients monotonically
increased from earlier to later stages of lactation. Both
studies partly attributed this trend to the potential ef-
fect of pregnancy which should be modeled in future
studies. The partial phenotypic regression coefficients
for MBW and for MilkE were comparable in magnitude
to those based on a classical regression approach (Tem-
pelman et al., 2015). However, those for dMBW are
not comparable since, as noted previously, the AMBW
“covariates” are expressed relative to average trends
modeled by the fixed effects (i.e., environmental sub-
classes and fifth order polynomial on DIM) on MBW.
This is further illustrated in results from Islam et al.
(2020) who also estimated negative albeit small partial
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phenotypic regression coefficients on dBW at various
stages of lactation, again because of the adjustment for
fixed effects.

Given the heterogeneity in heritabilities, genetic
correlations, and partial genetic regression coefficients
across the test period, it seems prudent to focus atten-
tion on selection for lactation-wise genetic merit. The
lactation-wise heritabilities were generally substantially
greater than the corresponding DIM-specific heritabili-
ties. Even dMBW was estimated to have a substantial
heritability exceeding 0.10 such that it would have a
meaningful effect in determining lactation-wise gRFI
or gFS. Heritabilities of lactation-wise (or averaged)
measures should be greater than heritabilities of their
individual daily components, as we noted for comparing
weekly to daily data, especially if the genetic and per-
manent environmental correlations between different
DIM for the corresponding trait deviate substantially
from unity. Negussie et al. (2019) similarly estimated a
lactation-wise heritability of 0.33 for DMI in Nordic Red
cows, whereas Manzanilla Pech et al. (2014) reported
a lactation-wise heritability of 0.46 for DMI on Dutch
Holsteins which was also much higher than their cor-
responding weekly heritabilities. Given the low genetic
correlations involving individual days between 150 and
200 DIM with the remainder of the 50 to 200 DIM test
period for gRFI and the low numbers of records within
the later DIM range in our study, more data should be
collected within later stages of lactation.

We focused the presentation of our results using only
pedigree information given that we were not able to fit
more than 2 traits at one time using genomic informa-
tion in a MTRR. Nevertheless, based on the remarkable
similarity between the pedigree- and genomic-based
results, the estimated variance components from a
pedigree-based analysis could be readily ported over to
a genomics bhased analyses thereby avoiding computa-
tionally intensive genomics based variance component
estimation. Forni et al. (2011) generally found little dif-
ference in estimated variance components using pedi-
gree versus genomics information, but determined that
standard errors for pedigree-based estimates would be
slightly larger than those based on genomics. Hence
our genomic-based estimates in Supplemental File S4
should be anticipated to have smaller standard errors
than the pedigree-based standard errors reported in
this paper. The APY algorithm (Misztal, 2016) may
also provide an option for computationally feasible
estimation of variance components using genomics in
MTRR.

To obtain more data from commercial dairy envi-
ronments, we anticipate that sensor information may
someday be used as a proxy for individual cow intakes.
Sensor data might be down-weighted accordingly rela-
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tive to actual DMI measurements, similar to what is
currently done for MY based on different DHIA sam-
pling protocols in the United States. From a national
genetic evaluation perspective, implementation of a
modified best prediction strategy (VanRaden, 1997)
may be a suitable alternative to MTRR in developing
a more stable gRFT and gIF'S that best reflects the het-
erogeneity in genetic parameters across a lactation yet
recognizes the heterogeneity between different sampling
protocols for the core traits and their generally higher
heritabilities on a lactation-wise basis. Heterogeneity
of variances and partial regression coefficients does
exist across environments (Tempelman et al., 2015)
and may need to be additionally accounted for by first
standardizing the data in some manner or pursuing
computationally intensive analyses to take account for
such heterogeneities (Lu et al., 2017). It may be more
feasible to alter the best prediction strategy accord-
ingly based on inferring environment-specific regression
relationships between DMI and energy sink traits.

CONCLUSIONS

We conducted a MTRR analysis involving the core
traits of feed efficiency, namely DMI, MBW, and
MilkE, to dynamically determine genetic parameters
for these traits as well as gRFI and gFS separately
for primiparous and multiparous cows. This analysis
also facilitates a more elegant strategy for estimating
lactation-wise heritabilities across the 50 to 200 DIM
test period, taking into account the heterogeneity in
parameters across lactation. The MTRR model not
only allows for a formal inquiry into changes in genetic
parameters (i.e., heritabilities) across lactation but will
potentially allow the use of sparsely recorded data on
DMI which may need to be increasingly used to sustain
future genetic evaluations of RFI and FS. Although
estimated heritabilities of lactation-wise gRFI were
near those of previous studies (0.25 for primiparous
cows and 0.17 for multiparous cows), genetic correla-
tions were estimated to be as low as 0.05 between 50
and 200 DIM for gRFI in primiparous cows. Neverthe-
less, genetic correlations between any daily ¢RFI with
lactation-wise gRFI were never less than 0.66. Greater
effort should be made to collect records on DMI on
cows across broader periods of the lactation.
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