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Introduction 
Reliabilities of genomic evaluations increase when more genotypes are matched to more 
phenotypes. Options to expand genomic evaluation include genotyping more animals, 
genotyping more markers, combining data sets across geographical and breed borders, using 
low cost, less dense marker subsets to obtain genotypes for a larger fraction of the 
population, phenotyping more animals and phenotyping more traits. Results and guidance are 
provided for each of those topics, including marker densities up to 500,000. New algorithms 
for haplotyping allow combining different marker sets and marker densities to obtain 
accurate genomic predictions for more animals with less expense. More options may require 
more research to optimize experimental designs and breeding plans. 

More animals 
Genotypes and phenotypes for thousands of animals are needed for successful genomic 
selection. Information from the reference population can be approximated as the sum of 
traditional reliabilities minus reliabilities of parent averages for the genotyped animals 
(VanRaden and Sullivan (2010)). Closest relatives provide the most information, but 
genotypes of previous generations also add accuracy. Numbers of progeny-tested dairy bulls 
that have already been genotyped are 12,142 in North America and about 20,000 in Europe. 
Genotypes and phenotypes for foreign animals can be easily exchanged and will add 
accuracy if genetic correlations across environments are high.  
 
Currently 5,619 cow genotypes are used in the US reference population, but they add much 
less information than bull genotypes because of lower traditional reliability, potential biases 
from preferential treatment and selective genotyping. Genomic evaluations of progeny 
should not be biased by selective genotyping of parents, but evaluations of parents might be 
biased by genotyping only progeny with the best phenotypes. The Cooperative Dairy DNA 
Repository (US Department of Agriculture, Beltsville, MD) contains DNA that could be 
genotyped for an additional 10,000 Holstein bulls that have been progeny tested in North 
America and have a traditional reliability of >70% for milk yield. Breeders have great 
incentives to genotype candidates for selection but less incentive to share costs of genotyping 
or phenotyping additional animals to expand reference populations. 
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More markers 
More genetic markers can increase both reliability and cost of genomic selection. Genotypes 
for 50,000 markers now cost <US$250 per animal for cattle, pigs, chickens and sheep. Many 
more markers are expected to become available in the near future, and a few animals (such as 
the Holstein bull ToMar Blackstar USA1929410) already have been fully sequenced (3 
billion DNA base pairs) by the US Department of Agriculture’s Bovine Functional 
Genomics Laboratory (Beltsville, MD). Previously reliabilities of genomic predictions were 
compared for up to 50,000 actual or 100,000 simulated markers. Reliabilities for young bulls 
increased gradually as marker numbers increased from a few hundred up to 50,000 (Calus et 
al. (2008); VanRaden et al. (2009a); Weigel et al. (2009)), increased slightly when markers 
with low minor allele frequency were included (Wiggans et al. (2010)) and increased from 
81 up to 83% as numbers of simulated markers increased from 50,000 to 100,000 using 
40,000 predictor bulls (VanRaden et al. (2009b)).  
 
Genotypes for 500,000 markers were simulated in this study for the 33,414 Holsteins with 
records in the North American database of actual genotypes as of January 2010. The 
population included 8,974 progeny-tested bulls, 14,061 young bulls, 4,348 cows with records 
and 6,031 heifers as well as 86,465 non-genotyped ancestors in the pedigrees. Haplotyping 
algorithms were tested using 1 simulated chromosome with a length of 1 Morgan, which is 
average for cattle, or using real genotypes for the same population. Gains in reliability were 
tested using 30 simulated chromosomes. The simulated percentages of missing genotypes 
and incorrect reads were 1.00 and 0.02%, respectively. 
 
Simulating linkage. The simulation program of VanRaden (2008) was modified to generate 
linkage disequilibrium in the founding population (animals born before 1960). Previously 
Hardy-Weinberg equilibrium was generated for founding alleles, but adjacent markers 
become more correlated as marker densities increase. Most other studies (e.g. Meuwissen et 
al. (2001)) used thousands of generations of random mating to establish linkage. Methods to 
simulate linkage directly in the founding generation were derived and used in this study but 
might not provide the same linkage disequilibrium pattern as in actual genotypes.  
 
Simulated genotypes and haplotypes can be more useful than real data for testing programs 
and hypotheses. Examples are analysis of larger data sets than are currently available or 
comparison of estimated haplotypes with true haplotypes, which are not observable in real 
data. Most simulations begin with all alleles in the founding generation in Hardy-Weinberg 
equilibrium and then introduce linkage using many non-overlapping generations of 
hypothetical pedigrees (Meuwissen et al. (2001)) or fewer generations of actual pedigree 
(VanRaden, 2008). Simulations can also include selection (Sargolzaei and Schenkel (2009)) 
or model divergent populations such as breeds (Toosi et al. (2009)). A goal of this study was 
to generate linkage directly in the founding population for a very large number of markers.  
 
The steps used to generate initial linkage were to 1) simulate underlying, unobservable bi-
allelic markers that each have an allele frequency of 0.5, 2) use the correlation of adjacent 
markers to introduce linkage among those in succession from one end of the chromosome to 
the other and 3) set minor allele frequencies for observed markers to <0.5 by randomly 
replacing a corresponding fraction of the underlying minor alleles by the major allele. The 



benefit of the underlying markers and an autoregressive correlation structure is that a single 
linkage parameter can model the gradual decay of linkage as marker distances increase. The 
idea is similar to using underlying normal variables for categorical traits because the math is 
simpler on the underlying scale (Gianola and Fernando, 1986).  
 
The underlying allele at the first locus on each chromosome is set to 1 or 2 if an initial 
uniform variable is above or below 0.5. Each subsequent allele in the founding population 
requires generating only two uniform random numbers: one to determine underlying linkage 
and a second to increase frequency of the major allele. Underlying alleles at subsequent loci 
are set to the same or the opposite allele as the previous locus if a uniform variable is less 
than or greater than 0.5 plus 0.5 times the correlation of the adjacent loci. Underlying alleles 
are converted to observed alleles using allele frequencies. If a second uniform variable is 
greater than twice the minor allele frequency, the underlying allele is overwritten with the 
major allele. 
 
Correlations among adjacent underlying alleles were set to 0.965 with 15,000 markers per 
chromosome and 0.70 (equal to 0.96510) with 1,500 markers per chromosome. Further 
testing may be needed to match actual and simulated linkage disequilibrium more closely.  
 
Haplotyping. Unknown genotypes can be made known (imputed) from observed genotypes 
at the same or nearby loci of relatives using pedigree haplotyping or from matching allele 
patterns (regardless of pedigree) using population haplotyping. Haplotypes indicate which 
alleles are on each chromosome and can distinguish the maternal chromosome provided by 
the ovum from the paternal chromosome provided by the sperm. Genotypes indicate only 
how many copies of each allele an individual inherited from its two parents.  
 
Many genotypes will be missing in the future when data from denser or less dense chips are 
merged with current genotypes from 50,000-marker chips or when two different 50,000-
marker sets are merged as is being done in the EuroGenomics project using methods of Druet 
et al. (2008). Missing genotypes of descendants can be imputed accurately using low-density 
marker sets if ancestor haplotypes are available (Burdick et al. (2006); Habier et al. (2009)). 
At low marker densities, haplotypes provide higher accuracy than genotypes when included 
in genomic evaluation (Calus et al. (2008); Villumsen and Janss (2009)). Missing genotypes 
were not an immediate problem with data from a 50,000-marker set because 99% of 
genotypes were read correctly (Wiggans et al. (2009)). 
 
Fortran program findhap.f90 was designed to combine population and pedigree haplotyping. 
Each chromosome was divided into segments of about 100 markers each. Each genotype was 
matched to the list of currently known haplotypes, which was sorted from most to least 
frequent for efficiency as haplotypes were found. If a match was found (no conflicting 
homozygote), any remaining unknown alleles in the found haplotype were imputed from 
homozygous genotypes. The individual’s second haplotype was obtained by subtracting its 
first from its genotype, and the second was checked against remaining haplotypes. If no 
match was found, the new genotype (or haplotype) was added to the list. After completing 
population haplotyping, pedigrees were examined to resolve conflicts between parent and 



progeny haplotypes, locate crossovers that created new haplotypes and impute haplotypes of 
non-genotyped ancestors from their genotyped descendants.  
 
One processor took 2 hours to find haplotypes for 43,385 actual markers of 33,414 Holsteins. 
For the same population, time increased only to 2.5 hours with 500,000 simulated markers 
but with 500 markers per segment. Computing time increased much less than linearly 
because most haplotypes were excluded as not matching after just the first few markers. 
Genotype storage required 13 gigabytes for 500,000 markers, but haplotype storage required 
only 2.5 gigabytes. Shared haplotypes were stored just once, and only index numbers were 
stored for individuals instead of full haplotypes. Paternal alleles were determined correctly 
for 95% of heterozygous markers, and linkage was determined correctly for 98% of adjacent 
pairs of heterozygous markers in simulated data. Ninety-five percent of missing high-density 
marker genotypes were imputed correctly with population haplotyping. Pedigree haplotyping 
can be used to impute missing genotypes efficiently for non-genotyped ancestors or progeny 
with lower marker density. 
 
Simulated genotypes for 1,479 Jerseys and 713 Brown Swiss were also used in testing the 
haplotyping programs. True haplotypes from the simulation allow checking proportions of 
correctly called linkages and paternal allele origins. Correct calls were summarized for each 
animal to determine how successful the algorithm was for different members of the pedigree. 
Estimates of genotype or haplotype accuracy will be needed with real data because true 
values are not available for comparison. Pedigree files included 86,465 Holstein, 16,306 
Jersey and 3,969 Brown Swiss non-genotyped ancestors. Genotypes, linkages and haplotypes 
were estimated for those animals and compared with their true genotypes and haplotypes 
from simulation. For each heterozygous marker, paternity was considered to be correctly 
called if the allele presumed to be from the sire was actually from the sire. Linkage was 
considered to be correctly called if estimated phase matched true phase for each adjacent pair 
of heterozygous markers. 
 
Table 1 shows results from 50,000 markers for the three breeds. For Holsteins, correctly 
called genotypes improved from 99% for raw data to 99.97% after haplotyping. Many non-
genotyped ancestors had sufficiently accurate imputed data to meet the 90% call rate 
required for genotyped animals. Thus, 1,308 Holstein ancestors could have their imputed 
genotypes included in genomic evaluation. Nearly all of those animals were dams because 
most sires have already been genotyped, whereas only about 30% of dams have been 
genotyped. About 95% of paternal alleles were determined correctly because nearly all sires 
were genotyped. The most popular sires and dams had 100% correctly called linkages and 
paternal alleles, whereas animals with fewer close relatives had somewhat fewer correct 
calls. 



The more precise information from haplotypes is useful both in understanding biology and in 
modeling the genome. Current single-nucleotide polymorphism (SNP) chips detect only 
genotypes, whereas new sequencing tools can directly detect haplotypes by reading DNA 
base pairs on one strand at a time. Currently the sequence segments are too short to 
reconstruct whole chromosome haplotypes easily.  
 
Reliability. Reliability for young bulls averaged 84.0% with 500,000 simulated markers for 
all genotyped animals as compared with 82.6% using a 50,000-marker subset. Observed 
reliabilities from actual genotypes may be lower than those from simulation (VanRaden et al. 
(2009a)) and are affected by distribution of quantitative trait loci, linkage among markers 
and selection within the population. A heavy-tailed distribution was used in simulation of 
effects of quantitative trait loci and in nonlinear (Bayes A) evaluation. With 500,000 
markers, one processor required 2.5 days to complete 150 iterations for the 5 replicates. 
Convergence was poor for the highly correlated marker effects but was acceptable for the 
breeding value estimates.  
 
Combinations of marker densities can improve reliability at lower cost. Transition to higher 
density chips will require including multiple marker sets in one analysis because breeders 
will not re-genotype most animals. To determine the number of higher density genotypes 
needed, three data sets were simulated to include genotypes from both 500,000- and 50,000- 
marker chips, and the missing genotypes were imputed using findhap.f90. Table 2 shows 
results from analysis of the three mixed densities as well as those from 50,000 or 500,000 
density alone using the same 5 data replicates. Increased reliability will require genotyping 
more than 3,726 of the 33,414 animals at higher density. Initially 80% of genotypes were 
missing, but only 6% of genotypes were missing after haplotyping.  

Fewer markers for more animals 
Fewer markers can be used to trace chromosome segments within a population once 
identified by high-density haplotyping. Without haplotyping, regressions could simply be 
computed for available SNP and the rest disregarded. Reduced SNP subsets were examined 

Table 1: Frequency of correctly called genotypes, linkages, and paternity by breed and 
animal group 
  

   Correct calls (%) 
Breed Number Animal group Genotype Linkage Paternity 
Holstein 1,308 Imputed 97.37 98.8 92.0 
 5,369 Progeny tested 99.97 99.3 95.2 
 11,646 Young 99.97 99.3 96.2 
Jersey 141 Imputed 97.87 98.9 90.8 
 1,361 Progeny tested 99.93 99.1 94.9 
 706 Young 99.94 99.3 94.5 
Brown Swiss 56 Imputed 96.63 97.8 87.0 
 506 Progeny tested 99.90 98.6 94.6 
 207 Young 99.90 99.5 95.2 



using every 10th, 100th or 1000th of the original 500,000 markers. Polygenic variance was 
assumed to be 70, 30, 10 and 0% of genetic variance with 500, 5,000, 50,000 and 500,000 
markers, respectively. Respective reliabilities obtained as squared correlations of estimated 
and true breeding values averaged across 5 replicates were 39, 70, 83 and 84% for 14,061 
young bull predictions. With haplotyping, effects of both observed and unobserved SNP can 
be included.  
 
Two simulated mixed-density data sets had 50,000 markers for cows and progeny-tested 
bulls but only 5,000 or 500 markers for young animals. Low- and high-density evaluations 
were compared for progeny that had both parents genotyped at high density. Reliabilities 
averaged 80% for young animals if 5,000 markers were genotyped and the other 45,000 
imputed as compared with 70% from 5,000-marker regression. At 500-marker density, 
inheritance probabilities were computed for each marker instead of simply assigning either 
parental haplotype. The Fortran program sparsehap.f90 was developed to compute 
inheritance probabilities and genomic evaluations of progeny using parents’ high-density 
haplotypes. Results (table 3) from this approach agree with those of Habier et al. (2009). 
Reliabilities averaged 70% when young animals were genotyped for 500 markers and both 
parents were genotyped for 50,000 as compared with 39% from 500-marker regression. 
Reliabilities averaged 77% with 5,000 markers for young animals (somewhat less than the 
80% with mixed-density haplotyping) because the inheritance probability approach did not 
use low-density genotypes of young animals to help assign haplotypes for reference animals. 

Table 3: Reliability (R2) of simulated genomic evaluations from tracing true or 
estimated parent haplotypes using 500 or 5,000 markers as compared with genotyping 
progeny for 50,000 markers  
 

 
 

R2 (%) 
Haplotypes used Markers 

(n) 

Correlation 
with 50,000-

marker genomic 
estimated 

breeding value 
Parent 

average True Estimated 
50,000 
markers

R2 gain due 
to use of 
estimated 

haplotypes 
(%)α 

500 0.92 44 71 70 83 67 
5,000 0.96 44 77 77 83 85 

αComputed as (low density R2 − parent average R2)/(high density R2 − parent average R2).

Table 2: Missing genotypes before and after haplotyping and reliabilities for genomic 
evaluations from simulated data by marker density for genotyping and number of 
animals genotyped with 500,000 markers (n) 
 

Genotype missing rates  

Single 
density: 
50,000;

Mixed density: 
50,000 and 500,000 

Single  
density: 
500,000; 

and genomic reliability n = 0 n = 1,586 n = 3,726 n = 7,398 n = 33,414 
Missing before (%) 1 88 80 70  1 
Missing after (%) 0.05 11 6 4  0.05 
Genomic reliability (%) 82.6 81.5 82.5 83.1  84.0 



The haplotyping success rates from findhap.f90 are sufficient to implement the low-density 
genotyping methods of Habier et al. (2009). Correlations were similar whether true or 
estimated haplotypes were used.  

More breeds 
Genotypes from other breeds can be viewed as additional data, but marker effects from one 
breed do not accurately predict genetic merit for other breeds. Correlations should increase 
with higher marker density, but high reliability may still require many genotyped animals in 
each breed. Breeds with population sizes smaller than for Holsteins have less reliable 
genomic predictions because fewer phenotypes are observed for each chromosome segment. 
For genomic evaluation of crossbreds, data from purebreds should be combined so that 
effects of chromosome segments from both populations will be well estimated. Unless 
prevented by breed association rules, introgression of favorable DNA from other breeds can 
happen automatically with genomic selection.   

More phenotypes 
Progeny testing has generated the valuable phenotypes that genomic selection now uses, and 
a continuing source of new phenotypes is needed. Young bulls will sire much larger fractions 
of the population than in the past, and numbers of progeny per young bull will increase. This 
may generate a larger number of useful phenotypes even if formal programs and incentives 
for participation in data recording decline. Huge numbers of daughters for a few bulls may 
no longer occur because of more rapid turnover of generations. Instead phenotypes will be 
distributed more evenly across more bulls and thereby provide more information.  
 
Phenotypes can be more directly matched to genotypes in national genomic evaluations 
using a 1-step instead of multi-step model (Aguilar et al. (2010)). The main advantage of this 
approach is to account properly for selection on genotypes. However, other biases may occur 
because phenotypes for many animals are matched to genotype probabilities instead of to 
observed genotypes. Use of probable or imputed genotypes is helpful only if probabilities are 
very high (as demonstrated in table 1). Estimates of gene content will not be precise for most 
non-genotyped animals in national evaluations. New methods may be needed to account for 
selection while using only animals with observed or well-imputed genotypes to estimate SNP 
effects. 

More traits 
Genomic predictions are most accurate for traits with long histories of recording because 
more phenotypes are available in the reference population. New traits can be added, but 
predictions may be poor until many records accumulate. Often new traits may have moderate 
to high correlations with previously recorded traits or combinations of traits. Therefore, 
multi-trait genomic models may be needed to combine recent data for new traits with 
historical data for correlated traits. Multi-trait models may reasonably use the same genetic 
correlations for SNP as for breeding values because breeding values are the sum of SNP 
effects. 



Conclusions 
Genotypes and genomic computations are rapidly expanding the data and tools available to 
breeders. With many new technologies and options, experimental design is becoming a more 
important part of animal breeding to balance the speed, reliability and cost of selection. 
Breeders and breeding companies need accurate advice on the potential of each investment to 
yield returns. Very high marker density increases reliability slightly (1.4%) in simulation, 
whereas lower densities could allow breeders to apply cost-effective genomic selection to 
many more animals. New methods for combining information from multiple data sets can 
improve gains with less cost. New computer programs that combine population haplotyping 
with pedigree haplotyping performed well with mixed-density genotypes for 500 to 500,000 
markers simulated for 33,414 animals. Breeders also need to continue collecting phenotypes, 
especially for traits with lower heritabilities or without long histories of data recording.  
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