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Introduction 
The availability of high-throughput assays for genotyping single nucleotide polymorphisms 
(SNP) has led to the genotyping of thousands of dairy cattle, mostly progeny tested bulls in 
artificial insemination (AI) programs or young bulls that are candidates for such programs, 
using the BovineSNP50 BeadChip (Illumina, Inc., San Diego, CA) or similar platforms.  As 
a result, various methods for estimating SNP effects and predicting direct genomic values 
(DGV) of selection candidates have been developed.  In the United States (US), genomic 
data have been used to enhance predicted transmitting abilities (PTA) for production, 
conformation, and fitness of dairy cattle since January, 2009.  Changes in reliability (REL) 
due to inclusion of genomic data are shown in Table 1 (VanRaden et al., 2009). 
 
Table 1.  Changes in reliability due to the inclusion of genomic data in national genetic 
evaluations in the United States (VanRaden et al., 2009). 
 

Trait Holstein Jersey Brown Swiss 
Net Merit +24% +8% +9% 
Milk Yield +26% +6% +17% 
Fat Yield +32% +11% +10% 
Protein Yield +24% +2% +14% 
Fat Percentage +50% +36% +8% 
Protein Percentage +38% +29% +10% 
Productive Life +32% +7% +12% 
Somatic Cell Score +23% +3% +17% 
Daughter Pregnancy Rate +28% +7% +18% 

 

Despite the aforementioned gains in REL of young selection candidates, the price of high-
density genotyping assays may limit their application to males and elite females.  The 
development of inexpensive, low-density genotyping platforms with, e.g., 300 to 3,000 SNP, 
could stimulate widespread implementation of genomics on commercial farms.   
___________________________________________ 
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This paper summarizes four recent studies regarding: 1) the relationship between published, 
genome-enhanced PTA (GPTA) and subsequent daughter performance; 2) the predictive 
ability of DGV resulting from selection of low-density SNP based on magnitude of estimated 
effects; 3) the accuracy of imputation of high-density genotypes from equally spaced low-
density SNP, and 4) the precision of DGV derived from imputed high-density genotypes.   

Materials and methods 
Relationship between published predictions and subsequent daughter performance.  To 
assess how well genomic evaluations are working in practice, we evaluated data from US 
Holstein bulls that had only genomic data in January 2009 and ≥ 50 milking daughters in 
August 2009.  In routine genetic evaluations, genomic data are combined with pedigree data 
when computing the official, published PTA that are released to the industry.  Therefore, 
instead of using the official August 2009 GPTA, we computed correlations of January 2009 
predictions with unofficial, “traditional” August 2009 daughter yield deviations (DYD) that 
contained no genomic information. 
 
Selection of low-density SNP based on magnitude of estimated effects.  The training set 
consisted of high-density SNP genotypes (from the BovineSNP50 BeadChip) and August 
2003 progeny test PTA for lifetime net merit (LNM) of 3,305 Holstein bulls born from 1952 
to 1998.  The predictive ability of models fitted in this study was evaluated in a testing set 
consisting of high-density SNP genotypes and April 2008 progeny test PTA for LNM of 
1,398 Holstein bulls born from 1999 to 2002.  Among bulls in the testing set, 85.5% had 
genotyped sires and 70.9% had genotyped maternal grandsires in the training set.  Genotypes 
for 32,518 loci, after removal of SNP with minor allele frequency (MAF) < 0.05 or complete 
linkage disequilibrium (LD) with adjacent SNP, were coded as 0 (homozygous for allele B), 
1 (heterozygous), 2 (homozygous for allele A), or missing.   
 
The PTA of sires in the training set were regressed on SNP genotypes using the Bayesian 
LASSO (BL) method of Park and Casella (2008), which was implemented via the Gibb’s 
sampler using the R software (R Foundation for Statistical Computing, 2008).  As a 
reference, estimated effects of all 32,518 SNP were used to compute DGV of bulls in the 
testing set, and these were compared with August 2008 progeny test PTA for LNM.  In 
addition, subsets of selected SNP were created by sorting the original 32,518 SNP by the 
absolute value of posterior means of their estimated effects and choosing the top 300, 500, 
750, 1,000, 1,250, 1,500, or 2,000 SNP.  Subsets of 300, 500, 750, 1,000, 1,250, 1,500, or 
2,000 equally spaced SNP were also created.  Subsequently, SNP effects were recomputed 
using the aforementioned BL model to regress August 2003 PTA of bulls in the training set 
on genotypes for each of the fourteen subsets of selected or equally spaced SNP.  Lastly, 
DGV of bulls in the testing set for LNM were computed using estimated SNP effects from 
the training set and corresponding genotypes of bulls in the testing set, and correlations 
between the resulting DGV and August 2008 progeny test PTA for LNM were computed. 
 
Imputation of high-density genotypes using equally spaced SNP.  Genotypes of 3,146 
Jersey dairy cattle (2,656 males and 490 females) for 43,385 SNP, which represented the 
subset of SNP on the BovineSNP50 BeadChip with a call rate of > 90%, < 1% parent-



progeny conflicts, incomplete LD with adjacent SNP, and MAF > 1% in the Holstein, Jersey, 
or Brown Swiss breed, were coded as described previously.  The population was divided into 
a reference panel, consisting of animals that were genotyped for all 43,385 SNP, and a study 
sample, in which genotypes were masked for a randomly chosen 20, 60, 80, 90, 95, 98, or 
99% of loci.  A subset of 2,542 animals born from 1953 to 2006 was used as the reference 
panel, and a subset of 604 animals born from 2007 to 2009 was used as the study sample.  
Three chromosomes were considered, BTA1, BTA15, and BTA28, but results are shown 
only for BTA15, which contained the median number of SNP (1,399).  After removal of 
SNP with unknown physical position on the chromosome based on the UMD2 assembly of 
B. taurus (Zimin et al., 2009), 1,377 SNP remained.  After masking 20 to 99% of SNP on 
BTA15 for animals in the study sample, the number of available SNP from which to impute 
masked genotypes ranged from 14 to 1,102, depending on the masking rate. 
 
Many algorithms have been developed for constructing haplotypes and imputing genotypes 
in humans (e.g., Scheet and Stephens, 2006; Kong et al., 2008; Howie et al., 2009).  In this 
study, masked genotypes were imputed using the haplotype clustering algorithm of Scheet 
and Stephens (2006), implemented via the fastPHASE version 1.2 software (University of 
Washington TechTransfer Digital Ventures Program, Seattle, WA), and the hidden Markov 
model algorithm of Howie et al. (2009), implemented via the IMPUTE version 2.0 software 
(Department of Statistics, University of Oxford, United Kingdom).  For computational 
reasons, the number of haplotype clusters in fastPHASE 1.2 was set to 32, whereas the 
number of conditioning states used in IMPUTE 2.0 was set to 40.  In addition, with 
fastPHASE 1.2, BTA15 was analyzed in its entirety, whereas with IMPUTE 2.0, 
computational feasibility was enhanced by breaking BTA15 into two pieces of equal size. 
 
Prediction of genomic breeding values using imputed high-density genotypes.  
Genotypes of 1,762 Jersey sires for 42,552 SNP, which represented the subset of 43,385 
SNP that are presently used for routine genomic evaluation of US dairy cattle after removal 
of SNP with unknown physical position based on the UMD2 assembly of B. taurus (Zimin et 
al., 2009), were coded as described previously.  Phenotypes, which represented the result of 
progeny testing, consisted of PTA for milk yield, protein percentage, and daughter 
pregnancy rate (DPR).  The training set contained 1,446 sires with ≥ 10 milking daughters in 
May 2006, whereas the testing set contained 316 sires that had no milking daughters in May 
2006 and ≥ 10 milking daughters in April 2009.  April 2009 PTA values were computed 
using a traditional animal model and contained no genomic information.   
 
Beginning with list of SNP from the BovineSNP50 Beadchip that were considered as 
potential candidates for a low-density chip, based on high MAF across a broad range of Bos 
taurus and Bos indicus breeds, we created equally spaced subsets in which 93.1% (all but 
2,942), 96.6% (all but 1,468), 98.3% (all but 741), or 99.1% (all but 366) of the original 
42,552 loci were masked.  The number of unmasked SNP per chromosome ranged from 48 
to 175 for a masking rate of 93.1%, 24 to 89 for a masking rate of 96.6%, 12 to 44 for a 
masking rate of 98.3%, and 6 to 20 for a masking rate of 99.1%.  Next, masked genotypes 
were imputed using the aforementioned algorithm of Howie et al. (2009), implemented via 
the IMPUTE 2.0 software, using 40 conditioning states.  For computational reasons, BTA1 
to BTA11 were broken into three pieces of equal size, BTA12 to BTA24 were broken into 



two pieces, and BTA25 to X were analyzed in their entirety.  Genotype probabilities from 
IMPUTE 2.0 (which range from 0 to 1 for possible genotypes of 0, 1, and 2 at a given locus) 
were used to compute the expected dosage value at each locus.   
 
After imputation of masked genotypes, May 2006 PTA for milk yield, protein percentage, 
and DPR of sires in the training set were regressed on SNP genotypes using the BL model 
described previously.  First, the model was fitted to the training data of 1,446 Jersey sires 
using all 42,552 SNP as covariates.  This provided estimated SNP effects, which were used 
to compute reference DGV for sires in the testing set.  Next, estimated SNP effects from the 
BL model with 42,552 covariates were used to compute DGV using imputed dosage values 
for each of the four masking rates described previously.  To evaluate the difference in 
predictive ability between imputing high-density genotypes versus the alternative of leaving 
them as missing, we also fit four reduced BL models containing 2,942, 1,468, 741, or 366 
SNP that were unmasked in the corresponding testing sets.  Estimated SNP effects from 
these reduced models were used to compute DGV of sires in the training set, as described 
earlier.  Lastly, to evaluate the potential loss in accuracy that might occur in future 
generations if some animals whose phenotypes contribute to the estimation of SNP effects 
lack high-density genotypes, we considered a scenario in which a random 50% of sires in the 
training set also had only low-density SNP genotypes.  In the case, only 723 sires provided 
reference haplotypes for imputation of high-density genotypes in the remaining 1,039 sires.  
Thus, the 42,552 high-density genotypes used for estimation of SNP effects in the full BL 
model represented a mixture of actual and imputed genotypes.  As previously, four full BL 
models were fitted with 1,446 phenotypes and 42,552 regression coefficients, but with 
varying proportions of actual genotypes and imputed genotype dosage values, as well as four 
reduced BL models with 2,942, 1,468, 741, or 366 SNP covariates.  Estimated SNP effects 
were multiplied by corresponding genotype dosage values and summed across markers to 
obtain DGV for 316 sires in the testing set, and resulting DGV were correlated with April 
2009 PTA from progeny testing.  

Results and discussion 
Relationship between published predictions and subsequent daughter performance.  As 
shown in Table 2, 238 Holstein bulls had official PTA in January 2009 based only on 
genomic data, as well as DYD in August 2009 based on ≥ 50 milking daughters.  Note that 
only 60 bulls had ≥ 50 daughters for daughter pregnancy rate.  Average January 2009 REL 
based on parent average (PA) information was 42% for yield traits, 39% for somatic cell 
score (SCS), and 26% for DPR, whereas REL of the GPTA, which included pedigree and 
genomic data, averaged 72%, 67%, and 62%, respectively.  Data from an average of 71 
daughters per bull (62 for DPR) provided an average REL of 84% for yield traits, 67% for 
SCS, and 62% for DPR in August 2009.  The average REL of January 2009 GPTA for SCS 
was equivalent to that of the August 2009 PTA based on 71 daughters, whereas average REL 
of the August 2009 PTA for DPR was still lower than REL of the corresponding GPTA in 
January 2009.  August 2009 DYD should be considered as preliminary, as changes may 
occur when additional progeny records become available.  Correlations between August 
2009 DYD from progeny testing and January 2009 PA and GPTA are also shown.  In every 
case, correlations were greater with GPTA than PA. 



Table 2.  Comparison of January 2009 parent averages (PA) and genome-enhanced 
predicted transmitting abilities (GPTA) for milk, fat, protein, somatic cell score (SCS), 
and daughter pregnancy rate (DPR) with August 2009 daughter yield deviations (DYD) 
for US Holstein bulls whose first-crop daughters calved between January and August. 
 

 Milk Fat Prot SCS DPR 
 No. Bulls  238 238 238 237 60 
 Reliability (Jan ‘09 PA)  42% 42% 42% 39% 36% 
 Reliability (Jan ‘09 GPTA)  72% 72% 72% 67% 62% 
 No. Daughters (Aug ’09 DYD)  71 71 71 71 62 
 Reliability (Aug ‘09 DYD)  84% 84% 84% 67% 52% 
 Correlation (Jan ‘09 PA, Aug ‘09 DYD)  0.444 0.540 0.476 0.376 0.213 
 Correlation (Jan ‘09 GPTA, Aug ‘09 DYD) 0.624 0.695 0.632 0.531 0.341 

 

Selection of low-density SNP based on magnitude of estimated effects.  Correlations 
between DGV of 1,398 Holstein bulls in the testing set and corresponding April 2008 PTA 
for LNM from progeny testing are shown in Table 3.  The reference model with 32,518 SNP 
provided a correlation of 0.612 for all bulls, with a significant advantage for bulls with 
genotyped sires.  By comparison, correlations between progeny test PTA and DGV from 300 
to 2,000 selected SNP ranged from 0.428 to 0.567, and correlations between progeny test 
PTA and DGV from 300 to 2,000 equally spaced SNP ranged from 0.253 to 0.539.   
 
Table 3.  Correlations of April 2008 predicted transmitting abilities for lifetime net 
merit with August 2003 direct genomic values for all SNP and selected or equally 
spaced SNP in a testing set of 1,398 Holstein bulls (rPT_All), 1,195 bulls with genotyped 
sires (rPT_Sire), and 203 bulls without genotyped sires (rPT_NoSire) (Weigel et al., 2009). 
 

No. SNP Method of SNP Selection rPT_All rPT_Sire rPT_NoSire 
300 Largest Effects 0.428 0.447 0.312 
300 Equally Spaced 0.253 0.262 0.202 
500 Largest Effects 0.485 0.503 0.369 
500 Equally Spaced 0.333 0.348 0.245 
750 Largest Effects 0.519 0.530 0.441 
750 Equally Spaced 0.435 0.450 0.348 

1,000 Largest Effects 0.537 0.549 0.460 
1,000 Equally Spaced 0.422 0.438 0.321 
1,250 Largest Effects 0.554 0.567 0.461 
1,250 Equally Spaced 0.477 0.489 0.395 
1,500 Largest Effects 0.559 0.576 0.445 
1,500 Equally Spaced 0.518 0.534 0.412 
2,000 Largest Effects 0.567 0.582 0.469 
2,000 Equally Spaced 0.539 0.559 0.408 

32,518 All Available 0.612 0.627 0.511 



In every case, the predictive ability of DGV from selected SNP was greater than for equally 
spaced SNP.  In a related study, Vazquez et al. (2009) noted that a low-density platform 
containing SNP with largest estimated effects for lifetime net merit in US Holsteins provided 
correlations of 0.40 to 0.55 with subsequent progeny test PTA for individual production and 
fitness traits, but correlations tended to be greater for production than fitness.  Furthermore, 
low-density assays composed of selected SNP will be breed and trait-specific.  Because of 
these challenges, it may be more efficient to genotype a slightly larger set of equally spaced 
SNP that would facilitate imputation of high-density genotypes, rather than to focus on 
prediction of DGV from smaller regression models that contain only a few hundred selected 
SNP with large estimated effects, and the feasibility of this alternative is discussed below. 
 
Imputation of high-density genotypes using equally spaced SNP.  The mean, minimum, 
and maximum proportion of masked SNP genotypes on BTA15 that were imputed correctly 
in the study sample is shown in Table 4.  With fastPHASE 1.2, the mean proportion imputed 
correctly ranged from 0.66 to 0.73 when only 1% or 2% of genotypes were unmasked in the 
study sample, versus 0.75 to 0.89 when 5 to 10% of genotypes were unmasked, as would be 
the case for a medium-density panel with 2,000 to 4,000 SNP.  As the percentage of 
unmasked genotypes increased to 20, 40, or 80%, the proportion of correct genotypes ranged 
from 0.90 to 0.99.  When the proportion of masked genotypes was very high, e.g., 98 or 
99%, IMPUTE 2.0 was slightly more accurate than fastPHASE 1.2, and when 90 or 95% of 
genotypes were masked in the study sample IMPUTE 2.0 was significantly more accurate.  
On the other hand, when 20, 40, or 80% of SNP genotypes were unmasked, fastPHASE 1.2 
was more accurate, because accuracy of IMPUTE 2.0 peaked at approximately 0.90 to 0.95. 
 
Table 4.  Mean (minimum, maximum) proportion of masked SNP genotypes on 
chromosome 15 (1,377 total SNP) that were imputed correctly in a future study sample 
composed of 604 US Jersey cattle, using a reference panel composed of 2,542 animals of 
the same breed (Weigel et al., 2010b). 
 

Proportion of SNP Unmasked 
in the Study Sample 

fastPHASE 1.2 
(32 haplotype clusters) 

IMPUTE 2.0 
(40 conditioning states) 

0.01 0.701 0.730 
(0.574, 0.766) (0.533, 0.925) 

0.02 0.726 0.780 
(0.596, 0.797) (0.568, 0.981) 

0.05 0.780 0.890 
(0.644, 0.856) (0.682, 0.999) 

0.10 0.874 0.924 
(0.732, 0.960) (0.762, 0.998) 

0.20 0.951 0.932 
(0.841, 0.993) (0.778, 1.000) 

0.40 0.984 0.935 
(0.890, 1.000) (0.772, 1.000) 

0.80 0.992 0.930 
(0.946, 1.000) (0.663, 1.000) 



Prediction of genomic breeding values using imputed high-density genotypes.  The mean 
proportion of masked SNP genotypes for which the most likely genotype provided by 
IMPUTE 2.0 matched the original BovineSNP50 genotype call was averaged across animals, 
loci, and chromosomes for 316 Jersey sires in the testing set (study sample).  At a masking 
rate of 93.1%, the proportion of genotypes imputed correctly was 0.912, whereas at masking 
rates of 96.6, 98.3, or 99.1%, corresponding means were 0.875, 0.789, or 0.735, respectively.  
When masking was applied to 316 sires in the testing set plus 723 sires in the training set 
(i.e., random 50%), means were 0.896, 0.860, 0.782, or 0.733 for masking rates of 93.1, 
96.6, 98.3, or 99.1%, respectively, indicating that halving the size of the training set 
(reference panel) led to a small reduction in imputation accuracy.  Table 5 shows correlations 
between DGV derived using estimated SNP effects from the May 2006 training set in 
conjunction with actual or imputed genotypes (or genotype dosage values) of sires in the 
testing set and the actual April 2009 progeny test PTA of sires in the testing set for milk 
yield, protein percentage, and DPR.  Reference values correspond to the full BL model in 
which none of the 42,552 loci were masked in the training or testing set.   
 
Table 5.  Correlations between predicted direct genomic values and corresponding 
April 2009 predicted transmitting abilities from for milk yield, protein percentage, and 
daughter pregnancy rate from progeny testing using full or reduced models with 42,552 
or 366, 741, 1,468, or 2,942  SNP covariates, respectively, with or without imputation of 
masked genotypes for bulls in the testing set or bulls in the testing set and a random 
50% of bulls in the training set (Weigel et al., 2010a). 
 

Masking Rate 
(number of 

unmasked SNP) 

Reduced Model 
with Masked 
SNP Deleted 

Full Model 
with Imputing 
in Testing Set 

Full Model with 
Imputing in 

Testing + 50% 
of Training Set 

Reference 
Model with No 

Masking 

 Milk Yield 
93.1% (2,942) 0.617 0.673 0.640 0.673 
96.6% (1,468) 0.515 0.649 0.628 0.673 
98.3% (741) 0.532 0.525 0.537 0.673 
99.1% (366) 0.492 0.367 0.472 0.673 

 Protein Percentage 
93.1% (2,942) 0.687 0.740 0.690 0.770 
96.6% (1,468) 0.614 0.676 0.658 0.770 
98.3% (741) 0.539 0.546 0.534 0.770 
99.1% (366) 0.504 0.468 0.506 0.770 

 Daughter Pregnancy Rate 
93.1% (2,942) 0.608 0.642 0.641 0.674 
96.6% (1,468) 0.585 0.619 0.610 0.674 
98.3% (741) 0.544 0.572 0.546 0.674 
99.1% (366) 0.518 0.470 0.506 0.674 



Conclusion 
Results to date indicate that genomic selection using high-density SNP genotypes will 
greatly enhance genetic progress in dairy cattle.  However, at current prices genotyping may 
be limited to males and elite females.  The development of low-density assays containing 
selected SNP with large estimated effects or, more likely, low-density assays containing 
equally spaced SNP that will facilitate imputation of high-density genotypes, could lead to 
widespread adoption of genomics on commercial farms.  Potential applications include 
selection of replacement heifers on farms that use gender-enhanced semen, preliminary 
genomic screening of young bulls or potential bull dams, parentage discovery, genome-
enhanced mate selection, and genome-guided management protocols.    
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