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a b s t r a c t

Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade
and can be defined as the use of genomic breeding values (GEBV) in selection programs.
The GEBV is the sum of the effects of dense DNA markers across the whole genome,
capturing all the quantitative trait loci (QTL) that contribute to variation in a trait. This
technology was successfully implemented in the United States, Canada, New Zealand,
Australia, and several European countries with very promising results. The GEBV
reliability depends on estimation procedures and models. The different methodologies
to estimate SNP effects and GEBV have been extensively tested for many research groups
with very promising results. Although GS is a success, many challenges still remain,
including integration of GEBV into genetic evaluation programs and increasing GEBV
reliability. The aim of this review is to discuss the main aspects involved with GS,
including different methodologies of imputation, SNP effect estimation, and the most
important impacts of GS implementation in dairy cattle.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The use of DNA markers for genetic improvement of
dairy cattle was first suggested by Smith in the late 1960s
(Smith, 1967), particularly for traits that are difficult to
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improve in conventional breeding programs because of
low heritability or difficult-to-measure phenotypes.
Affordable high-speed genotyping of large numbers of
single nucleotide polymorphisms (SNP) became available
for dairy cattle late in 2007, which permitted the devel-
opment of genomic selection programs as originally
described by Nejati-Javaremi et al. (1997) and expanded
by Meuwissen et al. (2001). In addition to increasing rates
of genetic improvement and reducing costs of progeny
testing (Meuwissen et al., 2001; Schaeffer, 2006), genomic
evaluations produce estimates of the contributions of
individual markers to additive genetic merit. The rapid
adoption of this technology has caused profound changes
in the dairy cattle industry (Stock and Reents, 2013).

Two major technological advances were critical to the
implementation and success of GS. The first was the
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completion of the bovine genome sequence and publication
of the reference assembly, which was the basis for acceler-
ated research progress and allowed the identification of
several thousands of DNA markers, known as SNP (Elsik et
al., 2009). The second one was the development of low-cost
SNP chips containing thousands of markers, which enabled
the estimation of highly accurate breeding values when
combined with phenotypic and pedigree data (Meuwissen
et al., 2001).

In a broad sense, GS can be defined as the use of
genomic breeding values (GEBV) to make selection deci-
sions. The GEBV can be derived as the sum of the effect of
markers across the genome, thereby potentially capturing
all the quantitative trait loci (QTL) that contribute to
variation in a trait. Reliable estimation procedures are
needed for the estimation of allele substitution effects of
each SNP for a trait (Hayes et al., 2009; VanRaden, 2008).

According to Schaeffer (2006), one of the main benefits
of using GEBV in dairy cattle breeding programs is that
selection can be made early in life, sometimes before an
animal is born, reducing the generation interval. This can
potentially double the rate of genetic gain. In addition,
more reliable information about cows can be obtained,
which may result in greater genetic progress through the
dams of cows selection path (Van Tassell and Van Vleck,
1991).

The objective of this article is to review the principal
aspects of GS in dairy cattle, including the most popular
methods for GEBV estimation, genotype imputation,
potential applications, and future perspectives.

2. Basis of genomic analyses in dairy cattle: linkage
disequilibrium and haplotype persistency

In the last decade, dairy quantitative traits began to be
studied and selected in many different breeding programs,
with the aid of molecular markers. The markers can be
direct, exactly marking the causative mutation of a gene,
or indirect, marking regions that are nearest to the
causative mutation or regions related to these mutations
in only a few families (Dekkers, 2004). Whenworking with
large SNP panels to analyze quantitative traits most
markers will be indirect, but in linkage with causal muta-
tions (Dekkers, 2004). When markers are in linkage with
the causative mutations, there is the possibility of recom-
bination between the two. Recombination is a phenom-
enon that occurs during the formation of gametes (sperm
and ovum) and involves the random exchange of genetic
material between homologous chromosomes (Griffiths
et al., 2007). The rate of recombination between two loci
is proportional to the physical distance between them
on the chromosome. Thus, the smaller the distance
between two loci, the slower it will get to equilibrium of
the expected genotype frequencies of these loci, under
generations of random mating. The linkage disequilibrium
(LD) measure will then indicate a nonrandom association
between two loci, based on their genotypic and allelic
frequencies (Falconer and Mackay, 1997). The main cause
of LD is the “linkage” between loci because of physical
proximity. Genomic selection exploits the linkage disequi-
librium (LD) between markers, since it assumes that the
effects of the analyzed chromosomal segments also repre-
sent the LD between the marker and a possible quantita-
tive trait locus (QTL) (de Roos et al., 2008). The extent,
distribution, and decay of LD in a population must be
characterized before a genomic selection program is
implemented.

Studies based on SNPs showed high LD over short
distances as reported by McKay et al. (2007) and
Bohmanova et al. (2010). Other authors, such as Khatkar
et al. (2008) and Qanbari et al. (2010), observed r2Z0.2 in
Holsteins for distances less than 100 kb. Santos et al.
(2013), working with a panel of 54,000 SNPs, reported r2

of 0.15, 0.17, and 0.17 for Guzerat (n¼1025), Gyr (n¼1959),
and Sindhi (n¼116), respectively. The variation in the
extent of LD published depends on several factors, includ-
ing breed history and population structure (e.g., effective
population size) that negatively influence LD (Hayes et al.,
2003); the sample size, which can lead to overestimation
in small populations (Yan et al., 2009); the density and
distribution of markers; the method used to construct
haplotypes; the stringency of SNP filtering (e.g., allele
frequency thresholds and Hardy–Weinberg equilibrium);
and the use of maternal haplotypes or both maternal and
paternal haplotypes (Bohmanova et al., 2010). These
results indicate that SNP density alone is sufficient to
provide LD between chromosome segments determined
for prediction of GEBV, especially when the inter-marker
distances are less than 100 Kb (r2 is moderate to high).
When proposing GS in its current form, Meuwissen et al.
(2001) used adjacent markers with r240.20 indicating
that this LD may explain the variation of the QTL. Calus
et al. (2008) used simulated data to evaluate the effect of
average r2 between adjacent pairs of markers on the
accuracy of genomic selection (correlation between true
breeding values and validation population GEBV). They
found that the accuracy of GEBV increased from 0.68 to
0.82 when the average r2 increased from 0.1 to 0.2. Based
on those results, de Roos et al. (2008) estimated that a
panel of at least 50,000 SNPs would be necessary to
achieve and r2Z0.20 between adjacent markers, which
is needed to support efficient GS. Another important use
for the LD is the construction of haplotypic blocks and
their diversity. These blocks can be used as units for
genomic analysis rather than the SNP (Calus et al., 2008),
in imputation algorithms (Browning and Browning., 2009),
and in genomic detection of lethal alleles (VanRaden et al.,
2011a). According to Khatkar et al. (2007), haplotypes are
chromosomal regions of high LD and normally have low
diversity, typically accounting for regions of low recombi-
nation flanked by hotpots of recombination. Generally, the
structure provided by the effective size between the
breeds, as well as the number of markers used, can
influence the assembly of haplotypic blocks.

When LD is estimated in different populations using
the same SNPs it is possible to study the persistence of
phase (PS) between them. PS refers to how much a
chromosomal segment is unchanged over a given physical
distance in different subpopulations, breeds, or species.
This measure is based on the correlations of r2 between
two populations, along with physical distances (de Roos
et al., 2008). Since PS is related to the accuracy of genome-
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wide association studies (GWAS) and GEBVs between
populations (de Roos et al., 2008), it is possible to evaluate
the feasibility of a multibreed genomic evaluation using
this measure. Silva et al. (2013) working with Gyr, Guzerat,
and Sindhi obtained correlations ranging from 0.40 to 0.56
for 100 kb distances, with an intense decline of PS,
suggesting low efficiency for multibreed evaluation based
on common SNP effects estimates for the 3 breeds. Despite
the low PS observed in some cases, the increased density
of the SNP panel markers, may consider high phase
correlation between pairs of markers at small distances,
as well as the largest LD between markers, making
possible the multibreed analyses based on the same SNP
effects.

3. Traditional marker-assisted selection versus genomic
selection: efficiency, profitability, and use
of (pseudo-) phenotype

Progress in animal breeding programs is achieved
through the selection of superior individuals for mating.
An animal's superiority is generally based on its genetic
merit ranking. The accuracy of evaluation methods is one
of the main components that determines the rate of
genetic gain in a population. Initially, evaluations were
based only on phenotypes, i.e., the animals that had better
performance were chosen for mating, or in the case of milk
production, the sons of the most productive cows were
retained for breeding. Breeding values were obtained by
multiplication of phenotypic deviations from the herd
average with heritability.

In the latter half of the 20th century, selection index
methodology was introduced by Hazel and Lush (1943). This
methodology considered the correlation between phenotypic
measures, as well as the genetic relationships between
animals with phenotypes (selection criteria to be used – in
the present left hand) and the individuals being evaluated
(objective selection – present in the right hand). With this
method it was possible to combine many sources of informa-
tion into a single breeding objective. In the indexes the main
properties would decrease the prediction error, maximizing
the correlation between the estimated and true (accurate)
genetic value and maximizing the probability of correct
classification for the predicted genetic value. Thus, there was
an increase in accuracy by aggregating information collaterally
with other animals. From this methodology we started to give
greater importance to the pedigree of animals for use in
analysis beyond parent–offspring relationships.

With the development of mixed model methods by
Henderson (1949) genetic evaluations began to provide
more accurate estimates of breeding value. First, through
the sires model that considered sire-progeny relationships,
and then through the animal model, which considered all
known relationships among animals in the pedigree. Using
this methodology it is possible to simultaneously estimate
fixed effects (BLUE – Best Linear Unbiased Estimator) and
random (BLUP – Best Linear Unbiased Prediction). Thus,
the BLUP solution is obtained for all animals present in the
pedigree. This methodology has similar statistical proper-
ties to selection index, but directly produces estimated
breeding values, unlike selection index, in which index
weights and breeding values are produced in separate
steps. Estimated breeding values (EBV) were widely
adopted as a selection tool in breeding programs, where
they are commonly presented as predicted transmitting
abilities (PTA), which are one-half of EBV.

The use of molecular marker information to increase
accuracy and reduce generation intervals has been studied
in recent decades, and implemented in a limited fashion in
some breeding programs. Marker-assisted selection (MAS)
was applied in dairy cattle for the pre-selection of animals,
and to select young bulls for entry into progeny testing
programs (Kashi et al., 1990a, 1990b; Mackinnon and
Georges, 1998). MAS simultaneously uses phenotypic
information and data about molecular markers in LD with
QTLs, and was adopted to increase annual genetic gain for
traits of economic importance in several animal species
(Dekkers, 2004). In MAS, BLUP estimates of total genetic
value are obtained including marker information as fixed
or random effects (Dekkers, 2004), or through an index
that combines the two sources of information using
weights that can be changed based on the selection
objective (Dekkers and van Arendonk, 1998).

Other molecular alternatives are being widely studied. The
first recognizable presentation of genomic selectionwas made
by Nejati-Javaremi et al. (1997), and the approach was
expanded and popularized by Meuwissen et al. (2001).
However, there was considerable lag between the description
of the concept and its widespread adoption, which did not
occur until panels with thousands of single nucleotide poly-
morphisms (SNPs) distributed across the bovine genome
became available (Van Tassell et al., 2008). SNPs are the most
abundant DNA polymorphisms in the genome, and they have
become preferred over other types of molecular markers
because they have low mutation rates and genotypes can
easily be read automatically (Romualdi et al., 2002). In GS, the
central idea is to not use specific markers for QTLs, but to use a
large number of markers distributed throughout the genome.
When many thousands of markers are used it can reasonably
be assumed that there are always markers located near causal
variants, which means that there are SNPs in LD with the QTL
(de Roos et al., 2008). The additive genetic merit of an animal
can then be decomposed into a contribution from themarkers
and a polygenic component that accounts for the variation not
explained by the markers. The marker and polygenic effects
can be estimated using statistical models similar to those used
for breeding value estimation, and performance, pedigree, and
genotype information can be combined into genomic breed-
ing values (Meuwissen et al., 2001; VanRaden, 2008). Cole
et al. (2009) confirmed that an infinitesimal model is appro-
priate for most traits of interest in dairy production, and
showed that there are few QTL in the traditional sense (loci
that explain large proportions of phenotypic variance).

Genomic selection does not have the same limitations
as MAS, and GS compared to BLUP provides (1) predictions
of breeding values with greater accuracy, particularly for
traits that are expressed in one sex or are of low herit-
ability, (2) theoretically lower rates of inbreeding (lesser
tendency for family selection), (3) anticipation of the
selection process in the case of measured characteristics
later in the life of the animals, and (4) facilitate the
evaluation of the traits of difficult to measure or high cost
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(Daetwyler et al., 2007; Dekkers, 2007; Muir, 2007;
Meuwissen, 2007).

Genomic selection has increased the rate of genetic
gain in livestock (Weigel et al., 2010). The increase in the
accuracy of genomic predictions is best observed in young
animals, with no significant changes in the already proven
bulls (Schaeffer, 2006). Proofs are used for pre-selection
for progeny testing, and also for selection of animals when
they are selected by GEBV in the total genomic evaluation.
In didactic scheme, the genomic proofs for dairy cattle
have a flow that involves a reference population and
another population to be selected. Thus, the reference
population consists of animals which have, necessarily,
accurate information of the trait. This population is used as
the genetic basis for predicting the effects of markers.

The determination of the reference population, as its size
and its constitution, has great influence on the accuracy of
genomic predictions (Hayes et al., 2009; VanRaden et al.,
2009). In the case of dairy herds, the constitution is mainly
dependent on the composition (bulls and cows) and selective
genotyping according to the structure of the response variable.
In most countries, only sires, mainly of high accuracy were
genotyped and included in the reference population (Loberg
and Dürr, 2009). However, the use of more accurate informa-
tion implies the use the best animals in the reference
population. However, simulation studies of dairy cattle
(Jiménez-Montero et al., 2011) concluded that the selection
of only females with high estimated breeding values or yield
deviations produced suboptimal results. This study showed
that a better sampling scheme for females is to select from the
upper and lower extreme values within the distribution of
yield deviations with the usual sampling for males, although
these authors have not evaluated this combination with
daughter yield deviations (DYD) for sires.

One of the first steps in genomic selection is to generate
the response variable for analysis, which depends on the
available sources of information (individual performance,
of the daughters or parents). Different information can be
used, from the phenotype itself, as single records, repeated
records, the average of the progeny, or even pseudo-
phenotypes such as DYD (VanRaden and Wiggans, 1991),
EBV, and deregressed-EBV (Garrick et al., 2009). For dairy
traits, pseudo-phenotypes are preferred because lactations
are sex-limited and only females have phenotypes. Among
these, DYD are the most-used because sires have a larger
impact on breeding programs than cows, and their DYDs
are more accurate than cow phenotypes (Calus, 2009). The
deregressed EBV can be considered a type of deregressed-
proof (DRPF) when using sires with information of high
accuracy in the reference population because they com-
bine different sources of information about the sires
besides daughter records. Generally the DRPFs are con-
sidered equivalent to DYD (Sigurdsson and Banos, 1995).
The deregressed EBV are used in genomic evaluation of
dairy traits when there are cows and bulls in the reference
population. However when using any deregressed pseudo-
phenotype there is an individual increment disproportion-
ate in response variable that leads to the need to consider
the heterogeneity of the residue by statistical models, with
weights that range according to the source used to dereg-
ress and effects considered (Garrick et al., 2009).
When using genomic evaluations as criteria for pre-
selection of animals to progeny test it is possible to reduce
spending to prove that animals would have low performance
in the test (Hayes et al., 2009), but there is potentially a
problem with preselection bias (Patry and Ducrocq, 2011).
Dekkers (2007) reported that rates of genetic change can be 3
to 4 times higher with GS than under current progeny test
programs, and the savings in logistical costs could be up to
97% of today's cost. Furthermore, genotyping costs are likely to
decrease over time, which would make GS easier to admin-
ister. Schrooten et al. (2005) reported that genetic progress
increased by 19% to 31% compared to progeny testing when
the markers explained 50% of the genetic variance. VanRaden
et al. (2009) reported that the predictive ability for dairy traits
using genomic predictions was 50% versus 27% for traditional
PTA. They also reported that gains for proven bulls were
highly significant, although smaller than the young bulls
because of the higher initial reliability of the proven bulls.
Note that GS is already implemented and showing promising
results in many countries, including the USA, Canada, New
Zealand, and much of Europe (Loberg and Dürr, 2009).

Despite the latest innovations in genomics that are
bringing the advantages described above, the molecular
data also demands increased statistical and computational
resources, limiting the use of such information in many
analyses including multi-trait models and test-day models.
Although these models are easily applied by replacing the
traditional numerator relationship matrix (A) with the
genomic relationship matrix (G) (Koivula et al., 2012;
Tsuruta et al., 2011), there is not yet a robust approach to
multivariate models that consider different variances for
each marker, which is one of the greatest prospects for
optimization of genomic analyses of the dairy traits.

4. Parentage correction and pedigree errors

For a successful and comprehensive evaluation of
individuals in any breeding program, correct parentage
and pedigree information are essential because pedigree
information is a key part of variance component and
breeding value estimation. Pedigree error rates in dairy
cattle breeds have been estimated to average 10% to 12%
(Banos et al., 2001; Spelman, 2002; Visscher et al., 2002),
although reports from the 1970s to the late 1990s esti-
mated values ranging from 5% to about 22% (Christensen et
al., 1982; Geldermann et al., 1986; Bovenhuis and Van
Arendonk, 1991; Ron et al., 1996). The rapid adoption of
micro-satellite parentage testing in the cattle breeding
industry probably reduced parentage and pedigree errors,
but most commercial (grade) cows are not tested.
Although error rates may have decreased over the years,
parentage and pedigree inconsistencies of 10% or 11% can
lead to reductions in genetic gain of 2–18% (Banos et al.,
2001; Visscher et al., 2002).

Before the advancement in high-throughput SNP data,
blood groups (Stormont, 1967) and mini- and s (Kashi et al.,
1990a, 1990b) were the basic means of inferring parentage.
Even though micro-satellites are still used, with the recent
availability of SNP markers and with large numbers of sires
(Harris and Johnson, 2010; Weigel et al., 2010; Fritz et al.,
2013; VanRaden et al., 2013b) and dams (Spelman et al., 2013;
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VanRaden et al., 2013b) genotyped in the USA, Canada,
Australia, New Zealand, Ireland, and France among others,
parentage and pedigree errors are increasingly identified
using SNP genotypes. McClure et al. (2012, 2013) have
developed methods to impute micro-satellite parentage
panels from SNP-based parents panels, which will assist cattle
producers as they transition from micro-satellite to SNP
genotyping for parental verification.

Parentage assignment is aimed at excluding individuals
(“exclusion principle”) from the list of potential parents.
This means that a large number of potential sires and dams
are examined and only one or a few individuals are
retained based on their marker data by using simple
segregation rules (Kashi et al., 1990a, 1990b; Hayes,
2011). In addition to marker genotypes, additional accu-
racy can be achieved if information such as birth dates and
mating records are considered.

Due to the abundance of SNP marker information and the
shift from micro-satellite to small SNP panels, we give a brief
description of how SNP information is used to correct
pedigrees and infer potential parents. Initial verification of
information (parents) obtained from pedigree are to be done
to detect parent–offspring inconsistencies. If parent–offspring
errors exceed a certain threshold, then loop through all of the
genotype data to infer the potential parents. For individuals
with no pedigree information, loop through all of the geno-
type data directly to obtain potential parents.

The algorithm for detecting and inferring parent off-
spring conflict is based on Mendelian inheritance rules
(Calus et al., 2011; Hayes, 2011). This means that, for a
bi-allelic SNP, an individual and the prospective parent are
both homozygous but for different alleles “opposing
homozygotes”. For example, if an individual has an A|A
genotype, the potential parent should carry the “A” allele
(A|A or A|B), however if the potential parent has B|B allele
(for more possible parent offspring conflicts per locus)
then they have opposing homozygous genotype. Looping
across all SNP genotypes, the sum of all “opposing homo-
zygous” is compared to an empirically determined thresh-
old (determined from the genotype error rate).
Furthermore, to avoid picking up monozygotic twins in
the pairwise comparison (parent–offspring check), infor-
mation from birth years could be used.

The empirical thresholds are based on the realized
distribution of genotyping errors for all parent–offspring
conflict checks. Wiggans et al. (2009), Calus et al. (2011),
and Hayes (2011) all reported similar distribution of Mende-
lian errors for the Illumina 50K SNP panel. Wiggans et al.
(2009) and Calus et al. (2011) used 4200 SNPs and 4250
SNPs, respectively, on a 50K panel to exclude parent–off-
spring conflicts. However, Hayes (2011) used a stringent
threshold of 425 SNPs on 50K SNP panel and 48 SNPs
on a 3K SNP panel. Additionally, unpublished results from
Gyr (Brazilian Bos indicus breed) showed a similar distribu-
tion when a 50K SNP panel was used. The number of
markers within the empirical threshold was o58, however,
o200 SNP markers were used as the threshold. The total
parent–offspring conflict observed was about 8% in Gyr, and
we could infer potential parent for about 2% of these errors.
Calus et al. (2011) removed 230 individuals with parent–
offspring conflict. Fisher et al. (2009) reported that, about 40
highly polymorphic SNP markers (MAF40.35) and on-farm
information about birth dates and mating periods were
needed to correctly assign parentage without any ambiguity.

Using SNP data, (i) recent ancestors errors, (ii) maternal
grandsire errors, and (iii) full- and half-sibling errors could
also be corrected (Wiggans et al., 2009; Calus et al., 2011;
VanRaden et al., 2013a). The reduction in parentage and
pedigree errors could go a long way to help reduce the loss
in genetic gain (Banos et al., 2001; Visscher et al., 2002)
and potentially decrease inbreeding. We conclude that,
although there is a dearth of knowledge on the current
pedigree errors detected using SNP data in dairy cattle
populations, the supposed reason being the lack of interest
in publishing pedigree errors, most published materials on
genomics (genomic selection, GWAS, etc.) undertake this
key component before performing their analysis.

5. Principal traits selected in a dairy breeding program
and their results with genomic selection analyses.

Since 2009, the United States in collaboration with
Canada has published genomic evaluations based on
BovineSNP50 genotypes. More recently these two coun-
tries included Illumina's Bovine3K chip genotypes in their
GEBV estimations, substantially increasing the number of
genomically evaluated animals (VanRaden et al., 2011a).
Many countries have implemented GS in their breeding
programs and encourage widespread use of young geno-
mically evaluated bulls (Wiggans et al., 2011). Hutchison
et al. (2014) have recently shown that the heavy use of
genomically evaluated young bulls in the US has greatly
reduced the generation interval and improved the rate of
genetic gain. The average age of sires of Holstein bulls born
in 2012 was 2.7 yr younger than those males born in 2006,
and 1.3 yr younger for females. This indicates that dairy
producers are willing to use semen from young bulls that
rank highly rather than use lower-ranking bulls with
progeny tests.

One of the most important requirements for GS imple-
mentation is the use of a large reference or training
population that include animals with both phenotype
and genotype information, thus all the traits routinely
evaluated on commercial breeding programs are able to
have their GEBV estimated. In the United States, more than
30 traits traditionally estimated and related to health,
yield, and fertility of dairy cattle have their GEBV available,
including net merit, milk yield, protein yield, fat yield,
protein percentage, fat percentage, productive life, somatic
cell score and daughter pregnancy rate (VanRaden et al.,
2009; Weigel et al., 2010).

Previous results of GS from Australia for protein yield,
protein percentage, fertility, Australian Profit Ranking, and
Australian Selection Index, demonstrated that GEBV reliabil-
ities estimated with Bayes A and BLUP methodologies were in
a range of 0.14–0.48 and 0.18–0.44, respectively. The reliabil-
ities of GEBV were considerably greater than traditional EBV
estimates even with a small reference population (approxi-
mately 600 animals) (Hayes et al., 2009).

More recent results from the Australian Dairy Futures
Cooperative Research Centre demonstrated that the
expansion of reference population to 10,000 Holstein and
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4,000 Jersey cows could lead to an increase of 0.04 to 0.08
in the reliability of breeding values, depending on the trait
(Pryce et al., 2012a).

In a similar study conducted by LIC (Livestock Improve-
ment Corporation) in New Zealand, GEBV for milk produc-
tion traits, live birth weight, fertility, somatic cell counts,
and longevity presented reliabilities for young bulls with
no daughter information between 0.50 and 0.67, indicating
a increase in the rate of genetic trend of more than 50%
compared with traditional EBV (Harris et al., 2008).

As milk production becomes increasingly specialized
and competitive, selection objectives will need to include
traits related to profitability and animal efficiency. To meet
this goal, new traits, not traditionally measured by breed-
ing programs are being evaluated for inclusion in selection
programs, such as feed efficiency (De Haas et al., 2012),
methane emission (Wall et al., 2010), energy balance
(Verbyla et al., 2010), disease resistance (Kirkpatrick
et al., 2011; Parker Gaddis et al., 2014), novel fertility traits
(Cochran et al., 2013a, 2013b), resistance to heat stress
(Dikmen et al., 2013), and calf birth weight (Cole et al.,
2014). One limitation on the introduction of novel traits on
GS is the low accuracies of the GEBV due to small reference
populations.

Calus et al. (2012) evaluated a novel trait with herit-
ability ranging between 0.05 and 0.30 with a moderate-
sized reference population and demonstrated that
although the accuracies were low (0.15 and 0.43 for traits
with heritabilities of 0.05 and 0.30, respectively), the
selection response could be substantial depending on the
heritability and economic value of the new trait and the
genetic correlation with the current breeding goal. Accord-
ingly, to achieve accuracies acceptable in dairy cattle
breeding programs, the reference population should be
larger.

6. Imputation results on genomic evaluation

Even though the price of genotyping individuals was
high about a decade ago, the promise of doubling genetic
gain at a lower cost than progeny testing (Schaeffer, 2006)
was enough incentive to genotype bulls on the 50K
Illumina SNP panel (Matukumalli et al., 2009). However,
the extended cost that came along with the requirement of
increasing the reference population (training set) and
genotyping selection candidate facilitated the need to
use alternative SNP panels that were cheaper and pre-
ferably efficient for genomic selection. Additionally, the
accurate in silico genotyping (imputation) of SNP markers
in the field of human genetics gave a unique perspective
on how genotyping cost could be drastically reduced
(Browning and Browning, 2007, 2009; Howie et al., 2009).

Genotype imputation uses population-based linkage dis-
equilibrium (LD), family-based linkage information or a com-
bination of both, to infer genotypes at un-typed marker loci.
Population-based imputation algorithms were developed
mainly to explore and capture LD information without using
a prior family informationwhichmight not be available. These
methods are very popular in the human genetics field,
however, it is also heavily used in the field of animal genetics.
The most prominent population-based software includes
Beagle (Browning and Browning, 2007, 2009), Impute2
(Howie et al., 2009), MaCH (Li et al., 2010), fastphase (Scheet
and Stephens, 2006), and PLINK (Purcell et al., 2007). On the
other hand, family-based or a combination of population and
family based imputation algorithms have been developed in
the field of animal genetics. These algorithms use, a priori, the
family information and subsequently LD information to infer
un-typed markers. Commonly used software includes PHASE-
BOOK (LinkPHASE and DAGPHASE) (Druet and Georges,
2010), FImpute (Sargolzaei et al., 2012), AlphaImpute (Hickey
et al., 2011), Findhap (VanRaden et al., 2011a), and PEDIMPUTE
(Nicolazzi et al., 2013).

In dairy cattle breeding programs, to reduce genotyping
cost, the Illumina Bovine3K BeadChip (�2900 SNPs) (Illumina
Inc., 2011) and Illumina Bovine7K BeadChip (�6900 SNPs)
(Boichard et al., 2012) were developed. Imputation accuracies
from a lower density SNP panel to higher density SNP panels
have been pretty accurate. Dassonneville et al. (2011) reported
imputation error rate (allelic error rate) of 3.9%, when they
imputed from 3K to 50K in French Holstein (reference
population¼3071; validation set¼966) using a combination
of Beagle v2.1.3 and DAGPHASE. They also reported 5.5% error
rate for Holstein bulls of the three Nordic countries (reference
population¼3058; validation set¼1086). Increasing the
Reference population with bulls from the EuroGenomics
consortium reduced error rate to 2.1% in the French Holstein
and 4.0% in Holstein bulls from the Nordic countries.
Sargolzaei et al. (2011) also reported imputation error rate
(imputing 3K to 50K) between 2.2% to 4.1% in three Canadian
dairy cattle breeds (Hosltein, Jersey and Brown Swiss). Error
rate was lower (between 0.53% to 1.03%) when the 7K SNP
panel was used. Khatkar et al. (2012) also reported error rate
of about 3.3% for Australian Holstein using Impute2. Recently,
Ma et al. (2013) reported allelic error rate of 3.7% in Swedish
and Finish Red dairy cattle for imputing 3K to 50K using
beagle v3.3. Studies from three Italian dairy cattle breeds
(Hosltein, Brown Swiss and Simmental) by Dimauro et al.
(2013) showed a lower allelic imputation error rate for
imputing 50K from 3K and 7K compared to the results
presented above. Error rates were about 10% for 3K and 5%
for HD using Beagle v3.3. Others studies with varying subset
of the 50K SNP markers shows error rate of about 2–8%
(Weigel et al., 2010; Khatkar et al., 2012). The above studies
have been done using Bos taurus breeds; however, initial
imputation results from Gyr, an important Bos indicus dairy
cattle breed of Brazil, shows slightly higher allelic error rate
(7.0% for 3K and 4.0% for 7K using Beagle v4) than the Bos
taurus breeds (Boison et al., 2014a), accepted for the Proceed-
ings of EAAP 2014. Differences in population structure, number
of animals in reference population, choice of imputation
algorithms or software have been explicitly shown to account
for the observed differences across studies. Furthermore, the
higher allelic error rate observed for Bos indicus breeds might
also be due to ascertainment bias of the 3K, 7K and 50K
Illumina SNP panels. This results in a small number of markers
being left on the lower density SNP panel (o2000 for 3K
ando5000 for 7K) as tag SNPs with large inter-marker
distances.

To increase accuracies of genomic breeding values more
than was observed with the 50K SNP panel for multi-
breed genomic, purebreed and crossbreed evaluations, the
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BovineHD BeadChip (HD) was introduced. Additionally, the
HD SNP panel was to help reduce the ascertainment bias
observed for the 50K in Bos indicus breeds.

Since most animals were already genotyped on the 50K
SNP panel, few but influential sires were suggested to be
genotyped on the HD SNP panel and the rest of the population
imputed. Goddard and Hayes (2008) suggested an algorithm
for efficiently selecting individuals to be genotyped on HD, so
that imputation accuracies for the rest of the population
would be high. For most breeds, imputing HD genotypes
from 50K have been high. Khatkar et al. (2012); Brøndum
et al. (2012); Ma et al. (2013); Pausch et al. (2013); Schrooten
et al. (2014), and Erbe et al. (2012), all have reported
imputation accuracies between nearly zero and 7% when
the reference population used in building haplotype library
was at least 1/3 of the validation population.

However, accuracies of GEBVs of real data for HD geno-
types have been shown to be smaller or sometimes lower
than expected in comparison to using the 50K SNP panel
(Erbe et al., 2012; Su et al., 2012) regardless of the trait and
method of prediction for Bos taurus breeds. Initial results in
Guzerat, a Bos indicus dairy cattle breed of Brazil, have shown
an increase in accuracies of about 4–12% for milk, fat and
protein yield in kg (Boison et al., 2014b), accepted for the
Proceedings of WCGALP 2014. The differences in the result
might be attributed to the right-skewed nature (lot of
markers in low frequency due to ascertainment bias) of the
minor allele frequency distribution for the 50K observed in
most Bos indicus breeds. The HD SNP panel, on the other
hand, has markers with high MAF.

Interestingly, the effect of imputation on overall esti-
mates of accuracies of breeding values has been low for
imputing 7K to 50K (Khatkar et al., 2012; Dimauro et al.,
2013) and 50K to HD (Khatkar et al., 2012; Su et al., 2012),
substantially lower for 3K to 50K (Dassonneville et al.,
2011; Dimauro et al., 2013). The great reduction in accura-
cies of GEBV for the 3K to 50K has been attributed to the
lower imputation accuracies observed, compared to the
imputation accuracies obtained for 7K to 50K and 50K to
HD. Low-density genotypes also are most commonly
available for young animals with no phenotypes or cows
with few phenotypes available, and the resulting low-
accuracy PTA may be more responsible for the small gain,
rather than the chip itself. Recently, Druet et al. (2014),
have shown, with a simulation study, that using imputed
sequence data might follow the same trend like the
imputed HD (very little loss in accuracy of GEBV). How-
ever, they point out in their paper that, effect of QTLs in
low frequency might be estimated with lower accuracy
than using actual sequence data.

The results from the studies available suggest that,
imputing genotypes from 7K to 50K; 50K to HD is feasible
and accurate enough for genomic evaluations.

7. Other uses of genomic information

There are a number of applications for genomic informa-
tion other than the prediction of high-reliability breeding
values. Perhaps the most prominent recent application is the
use of haplotypes in combination with next-generation
sequencing data to identify causal variants associated with
recessives. The methodology for identifying recessive haplo-
types by searching for a deficit of homozygotes was first
described by VanRaden et al. (2011a), and its use in combina-
tion with sequence data to identify a causal variant (APAF1,
associated with the HH1 haplotype) was reported in Adams
et al. (2012). Additional details are provided in VanRaden et al.
(2012). The US currently tracks 19 recessive haplotypes, and
the causal variant for many of those conditions is known (Cole
et al., 2013).

While in theory genomic selection should result in
lower rates of inbreeding (Daetwyler et al., 2007), that
has not proven to be true in practice (e.g., VanRaden et al.,
2011b). Sun et al. (2013) have showed that the use of
genomic inbreeding coefficients rather than pedigree
inbreeding in mating programs results in decreases in
expected progeny inbreeding, and the economic value of
using genomic relationships is 4$3 million per year for US
Holsteins when applied to all genotyped females. These
results are consistent with the work of Pryce et al. (2012b),
who also found that it is beneficial to consider genomic
inbreeding when allocating mates. However, Cole and
VanRaden (2011) showed that the best chromosomal
genotypes generally consist of two copies of the same
haplotype, even after adjustment for inbreeding, under-
scoring the tension between strategies that ensure max-
imal rates of genetic gain versus those that try to balance
selection response against the need to maintain genetic
diversity in the population.
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