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Obtaining variance of gametic diversity with genomic models
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Summary

Variance of gametic diversity () may be a useful tool for identifying matings with an
above-average likelihood of producing progeny with extreme breeding values. The aim
of this study was to show how this variance can be obtained from a statistical model and
to verify the estimates of this variance for an individual receiving a routine genomic
evaluation. An approach to obtain a normally distributed variance of all gametic values
from the sums of the binomial variances of QTLs was employed. A small simulated
genome was used to verify the adequacy of estimates of . For genomic evaluation,
GBLUP and BLASSO models were used. BLASSO had better performance for
estimation of . The results showed that markers with low MAF should be considered in
analyses, as well the covariance (dependence) between the markers. Finally, SNP
marker panels with medium to high-density may be sufficient for estimation.
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Introduction

The availability of genomic information has supported the development of a
variety of useful resources for breeding programs, such as genomic evaluation and the
assessment of individual homozygosity (Kim et al., 2013). Although there is great
concern about inbreeding/homozygosity in mating designs, traditionally in most
breeding programs, only the breeding value has been used as a selection criterion. Even
with genomic models (GM), the evaluation of mating and their future progeny are
based only on expected values (parent averages) and disregard the variability of those
values. Segelke et al., (2014) discussed potential uses of the variance of gamete values,
and Bonk et al., (2016) showed how the exact within-family genetic variation could be
calculated using data from phased marker genotypes. In this paper, we build on those
results and show how this gametic variance can be obtained in a simplified way from a
statistical point of view, and how that variance can be used for both mating design and
individual selection. We also demonstrate how this variance can be estimated for any
individual using results from a routine genomic evaluation.
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Methods

Obtaining the variance of gametic diversity

In the following discussion we refer to the variance of gametic diversity (),
which is equivalent to Mendelian sampling variance, because it is calculated as a
function of the probabilities of recombination for the transmission of all QTLs for the
gametes from one parent, without the need for validation by sampling progeny data.
Suppose there are four independent QTLs, with alleles A|a, B|b, C|c, D|d and effects of
allele substitutions equal to A = + 5, B = + 3, C = + 2, and D = + 1. An example of a
mating with different types of genotypes among these loci is shown in Table 1 in order
to verify all combinations of the parental genotypes.

It is easy to verify that the additive variance of the values of future progeny will
be given by the sum of the parent’s independently. Since we know all the possible
gametes of the parents, and all possible combinations in the offspring, the variance of
the population should be (). However, for large numbers of QTLs observing all gametic
values and writing all possible combinations of those gametes is a difficult task.
However, only heterozygous loci contribute to gametic variability, and those loci can be
identified by inspection of parental genotypes. The transmission variance of a biallelic
heterozygous locus i with an allelic substitution effect αi can be calculated from the
variance of a binomial distribution as , with probabilities of transmission p and q equal
to 0.5 and the sampling number (n) equal to one. Thus, in the previous example, the
could be calculated for the sire considering only the loci with heterozygous genotypes
Bb and Dd as 0.25*(32+12) = 2.5, and for the dam using only the genotypes Aa and Dd
as 0.25*(52+12) = 6.5, producing a progeny value of 2.5+6.5=9.

When two loci i and j are dependent the resulting variance can be obtained as ,
where , and pi and pj are always 0.5, and pij is the probability that two alleles of two
loci are inherited together. That probability can be calculated knowing the linkage phase
between the alleles and the recombination rate between these loci. The total variance
can be obtained as the sum for all n heterozygous QTLs in the genome of an individual,
where and . The value of can be easily computed as:

where MP is the (co)variance matrix of Mendelian probabilities among n loci. The
diagonal of MP matrix is composed of elements equal to, and off-diagonal elements by
). aln is the result of multiplication of the alleles related to the pij frequency of one of
the phases (maternal or paternal), encoding as -1 for allele 1, and as 1 for allele 2. Loci
with genetic distances greater than 50 cM on the same chromosome, or between loci on
different chromosomes, are considered to be independent. For genomic models, can be
easily obtained by formula [1], where is the solution for the marker effect. Thus, for
the GM the expression [1] will be close to that described by Bonk et al., (2016), to
obtain the Mendelian variance for the additive effect.

Simulation and Genomic analysis

Simulations were performed using QMSim version 1.10 (Sargolzaei &
Schenkel, 2009) and included three phases, with the first consisting of 500 generations
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(constant size of 1,000 individuals), the second of an additional 500 generations
(constant reduction from 1,000 to 200 individuals), and the third (expansion) phase
included 10 generations (increasing from 200 to 3,000 individuals). 200 males and 800
females from the last generation were randomly selected as founders of the
contemporary population, which consisted of 9 generations with 5 progeny per dam and
a replacement rate of 20% for dams and 60% for sires. In the ninth generation, the
empirical for all individuals was obtained from the estimated marker effects. The true
was calculated from the effects of the simulated QTLs and their genotypes, as presented
in equation [1]. Four traits were simulated with heritability of 0.1 and 0.3 combined
with a number of QTLs of 20 and 200. The phenotypic variance was assumed to be 1
for all traits. Four replicates were run for each trait.

A small genome with four autosomal chromosomes of 50 cM was simulated.
The QTL effects were based on a Gamma distribution (parameter β = 0.4). The
mutation rate for marker and QTL were fixed at 2.5x10-5. The number of crossovers
was sampled from a Poisson distribution. Originally, 200,000 markers were simulated
and randomly distributed along the genome. However, a panel formed with 10% of the
polymorphic markers sampled each 0.5 cM (HD panel), and another panel with 20% of
the markers also sampled every 0.5 cM and all QTLs (SEQ panel) were used.

Since depends on the effects of the markers, we used genomic evaluation models
without and with differential shrinkage (GBLUP and BLASSO, respectively). The
analyses were performed using GS3 v.3 software (Legarra et al., 2015). In order to
mimic a conventional genomic evaluation, only markers with MAF greater than 0.05
were considered. The model included the population mean, the markers effect, and the
residual.

Results and discussion

was calculated considering dependence and independence (MP diagonal)
between the loci, for all QTLs, for QTLs with MAF ≥5%, and for HD and SEQ panels
using solutions obtained with GM. The Pearson correlation between the true and
estimated ranged from medium to high (Table 2), indicating that estimates from GM
may be useful tools to enhance selection programs. In general, correlations increased as
h2 increased, while such a relationship was not apparent for the number of QTL number.
BLASSO had higher correlations among true and predicted than did GBLUP (Table 2)
for all scenarios simulated. This result is expected and can be attributed to the more
accurate estimation of QTLs effects by this model. In addition, GBLUP showed higher
predicted bias (Table 3), with the less-desirable (higher) values of MSE and linear
regression coefficients (b) farther from 1. The overestimation by GBLUP (values for b
much less than 1) revealed the desirability of differential shrinkage estimators for the
effect of many markers. However, the large differences observed between the models
may be caused by the very small genome size simulated.

For the trait with h2 = 0.10 and 20 QTL (Table 2), the correlations between
obtained with all QTLs and with QTLs with MAF ≥5% were of medium-high
magnitude, lower than that of other traits (high magnitude), resulting in lower
correlations with the estimated by GMs. While this result may be attributable to allele
frequency fluctuations in the historical population, it also implies that QTLs with low
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MAF are important for obtaining accurate estimates of . This variance does not depend
directly on population allele frequencies, but only on the individual's heterozygous state
(allele carrier). Although MAF control (≥5%) is used to improve the prediction of
GEBV (Uemoto et al., 2015), markers with low MAF may have greater linkage
disequilibrium with low MAF QTLs, providing better predictions of progeny
performance.

In order to facilitate the process of obtaining of in routine evaluations, the
covariance (dependence) between markers was ignored and compared with the true .
The correlations ranged in magnitude from medium to high using estimates obtained
from QTLs, and from low to high magnitude when obtained by the GM (Table 2).
However, the high correlation observed for one of the scenarios (h2 = 0.30 and QTL =
20) can be attributed to the randomness of the QTLs distribution in the genome. Thus,
the covariance between the markers should be considered for calculation of .

No differences in the correlations of the obtained with BLASSO were observed
between the HD and SEQ scenarios (Table 2). This result shows that there is no need
for QTL genotypes in the analyses and that panels with lower marker densities are
sufficient. However, a decrease in correlation was observed for estimates obtained with
GBLUP when the SEQ panel was used, regardless of the quantity of simulated QTLs.
This, together with the increase in overestimation due to the increase in the number of
markers (Table 3), confirms the preference for shrinkage model for estimation of .

In conclusion, this study verified the feasibility of obtaining by GM using HD
panels without the need to use sequencing data. For improving the accuracy of the
estimations, differential shrinkage models are preferred and markers with low MAF
should be used, and the covariance (dependence) among markers should be considered.
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Table 1. Scheme of a mating, with their genotypes for four independent QTL, additive
values, mean and variance of the values of the gametes and of future offspring.

Sire Dam
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Mating
Genotypes AABbccDd AaBBCCDd
Value 14 16

Gametes
Genotypes ABcD,ABcd,AbcD,Abcd ABCD, ABCd, aBCD, aBCd
Values 9,8,6,5 11,10,6,5
Mean 7 8

Variance 2.5 6.5

Offspring

Genotypes

ABcDABCD,ABcDABCd,ABcDaBCD,ABcDaBCd,
ABcdABCD,ABcdABCd,ABcdaBCD,ABcdaBCd,
AbcDABCD,AbcDABCd,AbcDaBCD,AbcDaBCd,
AbcdABCD,AbcdABCd,AbcdaBCD,AbcdaBCd

Values 20, 19, 15, 14, 19, 18, 14, 13, 17, 16, 12, 11, 16, 15, 11, 10
Mean 15

Variance 9
Here is considered A = + 5, B = + 3, C = + 2, and D = + 1 and a=b=c=d=0.

Table 2. Pearson correlation between gametic dispersion variance for all QTL
(), for QTLs with maf≥0.05 () and disregarding the dependency for all QTL (), and
QTLs with maf≥0.05 (), and their estimations using a high-density marker panel and
sequencing data by genomic model GBLUP (bp) and BLASSO (ls), considering (and )
and disregarding(and ) the dependency of the markers.

High-sensity panel Sequencing data QTLs data
QTLs

0.1

20

0.49 0.56 0.17 0.39 0.46 0.57 0.20 0.40 - 0.75 0.96 0.69
0.53 0.74 0.21 0.54 0.48 0.75 0.25 0.55 0.75 - 0.66 0.93
0.45 0.53 0.15 0.43 0.43 0.53 0.19 0.43 0.96 0.66 - 0.71
0.50 0.74 0.18 0.61 0.45 0.73 0.24 0.61 0.69 0.93 0.71 -

200

0.50 0.60 0.29 0.37 0.46 0.61 0.29 0.40 - 0.96 0.50 0.48
0.48 0.61 0.29 0.39 0.45 0.63 0.30 0.41 0.96 - 0.46 0.49
0.29 0.28 0.51 0.30 0.28 0.27 0.48 0.31 0.50 0.46 - 0.97
0.27 0.29 0.52 0.32 0.26 0.29 0.49 0.33 0.48 0.49 0.97 -

0.3

20

0.64 0.83 0.28 0.66 0.59 0.83 0.07 0.65 - 0.94 0.95 0.90
0.65 0.87 0.28 0.68 0.59 0.87 0.07 0.68 0.94 - 0.90 0.95
0.60 0.81 0.30 0.69 0.54 0.81 0.07 0.68 0.95 0.90 - 0.95
0.60 0.85 0.30 0.71 0.55 0.85 0.07 0.70 0.90 0.95 0.95 -

200

0.63 0.77 0.25 0.49 0.59 0.77 0.29 0.48 - 0.95 0.55 0.52
0.62 0.78 0.25 0.51 0.57 0.78 0.29 0.49 0.95 - 0.53 0.53
0.42 0.48 0.52 0.63 0.40 0.49 0.54 0.62 0.55 0.53 - 0.99
0.41 0.48 0.52 0.63 0.39 0.48 0.54 0.63 0.52 0.53 0.99 -

Values in bold represent the most accurate estimates using high-density marker
panel and sequencing data.

Table 3. Mean squared prediction (MSE), intercept (a) and coefficient of the
linear regression (b) between the gametic dispersion variance for QTL with maf≥0.05
and its estimation using a high density marker panel (HD) and sequencing data (SEQ)
by genomic models (GBLUP and BLASSO).

Trait
Model

HD SEQ
QTLs MSE a b MSE A B
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0.1
20

GBLUP 0.0014 -0.0010 0.27 0.0022 -0.00033 0.20
LASSO 8e-05 0.0027 1.20 8e-05 0.00185 1.26

200
GBLUP 0.0010 0.0058 0.23 0.0016 0.00637 0.18
LASSO 0.0001 0.0074 1.01 0.0001 0.00681 1.03

0.3
20

GBLUP 0.0017 -0.00697 0.43 0.0028 -0.00625 0.35
LASSO 0.0002 0.00282 1.46 0.0002 0.00247 1.41

200
GBLUP 0.0021 0.00979 0.40 0.0035 0.01123 0.33
LASSO 0.0004 0.00945 1.14 0.0004 0.00950 1.13

Values in bold represent the least biased estimates


