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Functional annotation and Bayesian fine-mapping
reveals candidate genes for important agronomic
traits in Holstein bulls
Jicai Jiang1, John B. Cole 2, Ellen Freebern1, Yang Da3, Paul M. VanRaden2 & Li Ma 1

A hundred years of data collection in dairy cattle can facilitate powerful studies of complex

traits. Cattle GWAS have identified many associated genomic regions. With increasing

numbers of cattle sequenced, fine-mapping of causal variants is becoming possible. Here we

imputed selected sequence variants to 27,214 Holstein bulls that have highly reliable phe-

notypes for 35 production, reproduction, and body conformation traits. We performed single-

marker scans for the 35 traits and multi-trait tests of the three trait groups, revealing 282

candidate QTL for fine-mapping. We developed a Bayesian Fine-MAPping approach

(BFMAP) to integrate fine-mapping with functional enrichment analysis. Our fine-mapping

identified 69 promising candidate genes, including ABCC9, VPS13B, MGST1, SCD, MKL1, CSN1S1

for production, CHEK2, GC, KALRN for reproduction, and TMTC2, ARRDC3, ZNF613, CCND2,

FGF6 for conformation traits. Collectively, these results demonstrated the utility of BFMAP,

identified candidate genes, and enhanced our understanding of the genetic basis of cattle

complex traits.
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Phenotypic records have been routinely collected in dairy
cattle to facilitate selective breeding for more than one
hundred years. The phenotype of a bull can be highly

accurately calculated from thousands of phenotypic records of his
daughters and other relatives1. A comprehensive spectrum of
phenotypes has been recorded in dairy cattle, including produc-
tion, reproduction, health, and body type traits2. GWAS on these
traits simultaneously in the same population can provide a better
understanding of the effects of underlying QTLs. Because of the
intensive use of artificial insemination and strong selection in
dairy bulls, there are a much smaller number of males than
females in the cattle population3, and chromosome segments can
be quickly traced back to an ancestral bull. The high relatedness
in the cattle population can facilitate accurate imputation4,
especially with the availability of many important ancestor bulls
sequenced by the 1000 Bull Genomes project5–8. These unique
features of the cattle population make a large-scale GWAS with
imputed sequence variants possible and valuable.

Fine-mapping of complex traits to single-variant resolution has
started in human studies, e.g., ref. 9,10. Because of the high levels
of linkage disequilibrium (LD) in the livestock population11, fine-
mapping of GWAS signals is still difficult in cattle. Additionally,
existing fine-mapping methods are not easily applicable to large-
scale cattle GWAS and fine-mapping studies. Some methods, e.g.,
CAVIARBF12 and PAINTOR13, generally use a logistic model
with a binary response and categorical functional annotations as
covariates. Such a logistic model is then incorporated into a
model search scheme that often limits the maximum number of
causal variants (e.g., 3) and is computationally impractical for a
locus containing thousands of sequence variants. When multiple
functional data sets are to be tested, model-searching needs to be
conducted separately for each set of functional annotation data,
further increasing the computational burden. In cattle, Bayes and
BayesRC methods have been applied to incorporate sequence data
into genomic selection models, but the large amount of compu-
tation from MCMC prohibits their direct application to large-
scale fine-mapping studies14,15. Although GCTA-COJO is cap-
able of fast conditional analysis for fine-mapping in cattle16, the
use of summary statistics and LD data from a reference popula-
tion can be suboptimal when direct genotype and phenotype data
are available. To address these problems, we develop a fast
Bayesian Fine-MAPping method (BFMAP) that can efficiently
integrate functional annotations with fine-mapping. Specifically,
BFMAP can re-use initial model search results for various func-
tional annotations and can be employed for both fine-mapping
and functional enrichment analyses. More importantly, the
functional enrichment estimated from BFMAP is, by definition,
the enrichment of causal effects, in contrast to the enrichment of
heritability by the well-known stratified LD score regression17.

In our study, the large number of bulls with highly reliable
phenotype and imputed sequence variants can facilitate pow-
erful GWAS and fine-mapping of major GWAS signals.
Although the high LD in the cattle genome makes fine-mapping
and functional enrichment studies difficult, the large sample
size and improved methods can help identify candidate genes of
complex traits as well as biologically informative enrichment of
candidate variants in functional annotation data. Specifically,
we seek to use BFMAP to identify and incorporate functional
annotation into the fine-mapping of 35 production, reproduc-
tion, and conformation traits in dairy cattle. The fine-mapped
genes and variants can provide candidates readily testable in
functional studies. The functional data enriched with variants
associated with complex dairy traits will be useful for future
cattle GWAS and genomic prediction studies. Additionally, the
initial model search results can be reused for estimating
enrichment of causal effects of dairy traits for additional

functional annotations that are being generated by the FAANG
and related projects in cattle18.

Results
Data description. We imputed over 3 million selected sequence
variants to 27,214 Holstein bulls after quality control edits, using
the 1000 Bull Genomes data as reference. These bulls were
selected to have highly reliable breeding values (predicted trans-
mitting abilities; PTA) for 35 production, reproduction, and body
conformation traits, with an average reliability of 0.71 across
traits (Table 1). The number of bulls available for individual traits
ranged from 11,713 to 27,161, with >20,000 animals having data
for 32 traits (Table 1). The 27,214 bulls had over 31.6 million
daughters with records for milk production, and the counts were
lower for other traits. This large, high-quality bull data set enables
our following GWAS and fine-mapping studies with great power
and precision.

Single-trait GWAS. We used a mixed-model approach imple-
mented in the software MMAP19 that can incorporate reliability
variation across individual bulls. The mixed-model used in our
GWAS was robust against population structure and familial
relatedness. As shown in Supplemental Data 1, 27 of the 35 traits
had a genomic control factor between 0.95 and 1.05.

Using a genome-wide significance level of P < 5E−8, we found
many clear association signals for the 35 dairy traits (Supple-
mentary Fig. 1). In total, there were 286 unique QTL regions
associated with the 35 traits, and the number of associations for
individual traits ranged from <3 for leg and foot traits to 23 for
protein percentage (Supplemental Data 1 and 2). As compared to
the Cattle QTLdb release 3520, we found that 123 associations
(43%) had been previously reported while 163 associations (57%)
were newly discovered in this study. We identified 15 new
association signals (out of 68) even for the five production traits
that had been extensively studied previously, and 92 new
associations (out of 125) for type traits that drew less attention
in previous studies (Fig. 1 and Supplemental Data 2). While a
proportion of these newly discovered QTLs were identified to be
associated with new traits, these results demonstrated the superior
power of our GWAS in dairy cattle.

Multi-trait association analysis. Consistent with trait definition,
hierarchical clustering of the 35 traits based on the absolute
correlation coefficients identified three trait clusters: production,
reproduction, and body type (Fig. 2). Interestingly, rump angle,
teat length, and dairy form were clustered into reproduction
traits, although they are type traits by definition, indicating a close
genetic correlation between these three traits and cattle repro-
duction. Even after removing the potential distortion from net
merit, rump angle, and teat length were still clustered in the
reproduction group while dairy form was clustered in production
traits (Supplementary Fig. 2).

From multi-trait association analyses of the three trait clusters,
we identified 33, 21, and 39 associations for production,
reproduction, and type traits using P < 5E−8, respectively (Fig. 3
and Supplemental Data 3). While multi-trait analysis is generally
more powerful than single-trait GWAS for pleiotropic QTLs21,22,
we found fewer associations from the multi-trait analyses than in
single-trait results (76 vs 286 unique QTLs). This is likely due to
the proportion of QTLs with pleiotropic effects on related traits is
less than expected, and/or the limited benefit of including
additional traits in cattle studies where individual traits are
already highly accurate (Table 1). Although the majority of the
multi-trait associations were already identified from single-trait
GWAS, we found ten associations that were missed by single-trait
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analyses (Supplemental Data 4). Interestingly, we noticed that the
top variant in multi-trait analysis could be >1Mb away from the
top variants in single-trait GWAS (Supplementary Fig. 3), so the
multi-trait results were combined with single-trait analyses to
refine candidate QTL regions for fine-mapping.

Fine-mapping. To facilitate fast fine-mapping analyses, we
developed a fast Bayesian Fine-MAPping method (BFMAP) that
calculates a posterior probability of causality (PPC) for variants in
candidate regions. We picked QTL regions for fine-mapping from
both single- and multi-trait GWAS results. Initially, we fine-
mapped 434 association signals for 282 QTLs using a significance
threshold of 5E−7 (Supplemental Data 5). The observed number
of fine-mapped signals in a QTL is approximately exponentially
distributed, consistent with our expectation of more causal
mutations with a lower probability in a QTL region (Fig. 4). After
further quality control edits, we finally fine-mapped 308 asso-
ciation signals for 32 traits (Supplemental Data 6). Specifically,
there were more than 20 independent association signals identi-
fied on chromosomes 5, 6, 14, 18, and 29, while very few were
identified on chromosomes 12, 22, and 27.

We investigated the impacts of incorporation of SnpEff-
inferred effect impact (commonly used functional annotation) on
fine-mapping performance. First, incorporating variant impacts
resulted in a substantial change of PPC for variants in the 308
fine-mapped association signals. Variants with moderate impact

had a considerable increase in PPC when functional information
was included in the calculation, while modifier variants generally
had a decreased PPC (Fig. 5a). Second, fine-mapping by
incorporating variant impacts generated significantly smaller
95% credible variant sets than that using an equal prior for all
variants (P= 0.01, Wilcoxon signed-rank test; Fig. 5b). These two
features make the incorporation of functional annotation favored
in our fine-mapping analyses.

Enrichment analysis. To verify the quality of our fine-mapped
variants and characterize their distribution on the cattle genome,
we investigated the enrichment of fine-mapped variants with
different functional annotation data available to cattle, including
location in protein-coding gene, effect predicted by SnpEff23, and
evolutionary constrain predicted by GERP24. Our enrichment
analysis estimated the probability of a causal variant being in a
functional category and the probability of a non-causal variant
being in the category. The ratio of the two probabilities was used
to measure the enrichment of causal variants for this functional
category25, with a value larger than one indicating higher
enrichment than the genome background. This enrichment
analysis has also been implemented in BFMAP.

We first categorized variants into five groups based on their
locations regarding protein-coding genes, i.e., CDS, 5′ UTR+2 kb
upstream, intron, 3′ UTR+2 kb downstream, and other (inter-
genic or non-protein-coding genic regions). Despite the strong

Table 1 Number of Holstein bulls, mean and standard deviation (SD) of PTAs, and reliabilities for 35 dairy traits

Trait Name Abbreviation N of Bulls Deregressed PTA Reliability
Mean SD Mean SD

Milk yield Milk 27,156 −245.86 850.58 0.860 0.082
Fat yield Fat 27,156 −5.92 30.52 0.860 0.082
Protein yield Protein 27,156 −5.31 23.84 0.863 0.083
Fat percentage Fat_Percent 27,156 0.0136 0.107 0.860 0.082
Protein percentage Pro_Percent 27,156 0.0086 0.0464 0.863 0.083
Net merit Net_Merit 27,161 −106.91 278.63 0.763 0.110
Productive life Prod_Life 26,727 −1.367 3.461 0.682 0.145
Somatic cell score SCS 27,143 3.027 0.235 0.786 0.110
Age at first calving AFC 16,314 −0.446 11.855 0.439 0.258
Days to first breedinga DFB 11,713 0.534 2.825 NA NA
Daughter pregnancy rate Dtr_Preg_Rate 25,699 −0.593 3.025 0.618 0.185
Heifer conception rate Heifer_Conc_Rate 19,334 −0.660 9.610 0.377 0.210
Cow conception rate Cow_Conc_Rate 20,380 −1.053 6.879 0.597 0.202
Sire calving ease Sire_Calv_Ease 26,345 7.959 2.461 0.671 0.224
Daughter calving ease Dtr_Calv_Ease 23,263 9.141 3.182 0.594 0.176
Sire stillbirth Sire_Still_Birth 21,543 8.190 1.831 0.495 0.249
Daughter stillbirth Dtr_Still_Birth 20,424 8.085 2.958 0.508 0.222
Final score Final_score 25,638 −0.817 1.484 0.702 0.140
Stature Stature 25,641 −0.482 1.532 0.844 0.079
Strength Strength 25,633 −0.278 1.513 0.743 0.147
Dairy form Dairy_form 25,615 −0.492 1.745 0.752 0.132
Foot angle Foot_angle 25,626 −0.742 2.263 0.664 0.198
Rear legs (side view) Rear_legs(side) 25,641 −0.009 1.734 0.754 0.137
Body depth Body_depth 25,636 −0.413 1.622 0.720 0.180
Rump angle Rump_angle 25,641 0.038 1.482 0.828 0.089
Rump width Rump_width 25,641 −0.504 1.543 0.766 0.114
Fore udder attachment Fore_udder_att 25,640 −0.908 1.852 0.781 0.112
Rear udder height Rear_ud_height 25,640 −0.885 2.095 0.737 0.136
Udder depth Udder_depth 25,631 −0.653 1.665 0.836 0.082
Udder cleft Udder_cleft 25,641 −0.720 1.980 0.718 0.156
Front teat placement Front_teat_pla 25,641 −0.562 1.663 0.781 0.106
Teat length Teat_length 25,631 0.104 1.482 0.815 0.087
Rear legs (rear view) Rear_legs(rear) 24,763 −0.759 2.709 0.605 0.178
Feet and legs composite Feet_and_legs 25,608 −0.928 2.501 0.600 0.208
Rear teat placement Rear_teat_pla 25,492 −0.436 1.900 0.762 0.103

aFor DFB, we used PTA as reliability was unavailable
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LD levels in the cattle genome26, we observed distinctive
enrichment patterns across these five categories (Fig. 6a). Using
bootstrapping, we calculated 95% confidence intervals for the
enrichment levels, showing significant enrichment of fine-
mapped variants in CDS (4.52×) and 5′ UTR (2.39×), but not
in intron (0.93×) or 3′ UTR (0.77×). We also analyzed a group of
non-protein-coding genes but found significant depletion withcEC = 3.2E−04 (Supplemental Data 7), suggesting a lacking of
functional impacts in these genes on dairy cattle traits.

We further investigated the enrichment of fine-mapped
variants regarding their genomic locations and protein-coding
effects (High, Moderate, Low or Modifier) predicted by SnpEff23.
When modeling these four categories, we found severe depletion
of variants with high impact (cEC = 2.51E−05; Supplemental
Data 8). This is strikingly different from a previous study on
human complex traits and diseases that reported an enrichment
of >100 for this category25. As shown in Fig. 5b, we observed a
significant enrichment in moderate-impact variants (cEC = 8.7; P
= 0.01). Low-impact variants also showed an enrichment (2.0×),
though it was not statistically significant (Fig. 6b). As expected, a
minor depletion was seen in modifier variants (0.87×).

We also used constrained elements on the cattle genome to
categorize variants into two groups (inside of or outside of
constrained elements), as highly conserved DNA sequences may
imply functional importance. As shown in Fig. 6c and

Supplemental Data 9, fine-mapped variants were significantly
enriched in constrained elements (3.72×; P= 0.02). When further
categorizing variants into six groups based on both constrained
elements and variant impacts (Moderate, Low or Modifier), we
found the highest enrichment in moderate-impact variants inside
constrained elements (25.56×; P= 0.005). For the other cate-
gories, we observed no enrichment of fine-mapped variants
(Fig. 6d and Supplemental Data 10).

When comparing different trait groups, we observed little
difference in the pattern of enrichment regarding SnpEff-inferred
effect impact (Fig. 7 and Supplemental Data 11). Moderate-
impact variants had a clearly higher enrichment of being causal
for production traits than for reproduction and type traits. We
further used permutation to generate the null distribution of
EC(Production)/EC(Reproduction+Type) and showed that the
difference was statistically significant (P= 0.01; Supplementary
Fig. 4A). However, the enrichment for low-impact variants was
similar between the three trait groups (Supplementary Fig. 4B).

Candidate genes. Based on the PPCs of variants after incor-
poration of SnpEff impact, we calculated PPC for each gene in
each independent association signal. In total, there were 564
gene-trait association pairs with PPC >0.01 (Supplemental
Data 12). Most of the genes had either a large (>0.95) or small
PPC (<0.05) (Supplementary Fig. 5). We further obtained a short
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list of the most promising candidates by applying conservative
criteria: PPC >0.9 if a gene is associated with only one trait and
PPC >0.5 for all traits if a gene affects multiple traits.

This short list had 69 unique genes including both previously
reported genes and newly discovered ones for cattle traits
(Table 2). For example, ABCG2 and DGAT1 are known to affect
milk production in dairy cattle27,28. The ARRDC3 gene has been

associated with body confirmation traits and calving traits in beef
and dairy cattle21,29,30. Our fine-mapping study also revealed
novel gene/association combinations for dairy traits. A previous
study reported that the ABCC9 gene was associated with fat yield,
protein yield, and calving to first service interval in Holstein
cattle31. In our study, we found a pleiotropic effect of this gene on
body type traits (fore udder attachment and udder depth), milk
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production (milk and protein yields), and daughter pregnancy
rate, with a PPC of almost 1 for all the associated traits. In
addition, we found that there were no common variants among
the credible variant sets for these traits (Table 2), suggesting that
ABCC9 might have different causal mutations for the associated
traits. TMTC2 has been associated with teat length30, and our
fine-mapping showed that it had an effect on six type traits
(including teat length, fore udder attachment, front teat
placement, rear teat placement, rear udder height, and final
score), with PPC being ≥0.95 for all those traits. Abo-Ismail et al.
reported CCND2 was associated with stature30. Our fine-mapping
results determined its association with four type traits (PPC >
0.95 for body depth, rump width, and stature). It is worth noting
that our fine-mapping study not only discovered association of a

gene with a trait, but also provided the posterior probability of
being causal for a gene.

Candidate variants. Because our stringent quality control filter-
ing during and after imputation removed many variants (~20%,
mostly intergenic with some genic), fine-mapping of the QTL
regions to single-variant resolution could not always be achieved.
Nevertheless, we obtained 95% credible variant set for each
independent signal and merged them into one table. This resulted
in a total of 1582 unique variants (Supplemental Data 13). We
generated a short list of those variants with a moderate impact on
protein coding and PPC >0.2 (Table 3). Among the list, some
variants have been previously reported, e.g., Chr6:38027010 in
ABCG227 and Chr26:21144708 in SCD32. We also found other
promising candidate variants, e.g., Chr7:93244933 in ARRDC3
with an average PPC of 0.608 on 9 traits, Chr8:83581466 in PTH1
with an average PPC of 0.68 on two type traits (body depth and
strength), Chr1:69673871 in KALRN with an average PPC of 0.46
on two reproduction traits (cow conception rate and daughter
pregnancy rate), Chr17:70276788 in CHEK2 with an average PPC
of 0.39 on two calving traits (sire calving ease and daughter cal-
ving ease).

Discussion
In this study, we performed GWAS for 35 production, repro-
duction, and type traits in dairy cattle with a uniquely large data
set, and then fine-mapped the GWAS signals to single-gene
resolution. With the fast computing method that we developed
(BFMAP), we attempted to find causal effects in hundreds of loci
each of which contained thousands of variants. We also investi-
gated the functional enrichment patterns of several functional
annotation data available in the cattle genome, and incorporated
useful functional information into the final fine-mapping. In sum,
we provided not only a credible candidate gene list for follow-up
functional validation, but also a unique resource that can be easily
employed by future functional enrichment studies.

In the single-trait GWAS, we found many association signals
that have not been discovered (Fig. 1), clearly demonstrating the
benefits of using large dairy cattle data for GWAS of complex
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traits. Reliabilities of deregressed PTAs were modeled for most of
the traits. For the traits with small variation of reliability, we
observed similar results for the models with and without relia-
bility; e.g., QTLs found when not modeling reliability were largely

the same as those by incorporating reliability for fat percentage
and daughter pregnancy rate (Supplementary Fig. 6). Interest-
ingly, we observed some deflations in the GWAS of production
traits, which could be due to the large QTL effects on these traits
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including the DGAT1 gene. Minor inflations were observed in
GWAS for calving traits (i.e., calving ease and stillbirth) and final
score (Supplementary Fig. 1). Although there were many sporadic
variants passing the threshold of genome-wide significance (P <
5E−8), we could still locate a few credible GWAS peaks where
there were a cluster of significant variants.

Initially, our fine-mapping discovered as many as 19 signals in
a candidate region for a trait, as we applied a variant inclusion
threshold accounting for only the effective number of indepen-
dent variants (meff) at the locus-by-trait level. We also noticed
that there were more locus-by-trait association pairs with mul-
tiple signals than with only one signal. By examining those with

Table 2 Candidate genes with high posterior probability of causality

Gene Traits Gene PPC Minimal p-values

ABCG2 Fat|Fat_Percent|Milk|Net_Merit|Pro_Percent|Protein 0.85~1.00 1.1E-09~1.5E-221
TMTC2 Final_score|Fore_udder_att|Front_teat_pla|

Rear_teat_pla|Rear_ud_height|Teat_length
0.95~1.00 1.2E-09~4.9E-26

ARRDC3 Dtr_Calv_Ease|Rear_ud_height|Sire_Calv_Ease
|Strength|Teat_length|Udder_depth

0.56~0.91 8.4E-09~2.7E-15

ABCC9 Dairy_form|Dtr_Preg_Rate|Fore_udder_att|Milk
|Protein|Udder_depth

0.999~1.00 4.4E-07~2.6E-21

DGAT1 Milk|Net_Merit|Pro_Percent|Protein|SCS 0.99~1.00 1.5E-21~2.0E-260
VPS13B Fat_Percent|Milk|Pro_Percent|Rear_ud_height|Udder_cleft 0.97~1.00 1.5E-07~1.5E-76
ZNF613 Body_depth|Net_Merit|Sire_Still_Birth|Stature|Strength 0.61~0.84 2.2E-14~8.9E-37
CCND2 Body_depth|Rump_width|Stature|Strength 0.71~1.00 2.4E-19~4.5E-26
MGST1 Fat|Fat_Percent|Milk|Pro_Percent 0.999~1.00 7.1E-21~2.4E-75
FGF6 Body_depth|Rump_width|Stature|Strength 0.76~1.00 1.1E-07~3.9E-21
CCDC88C DFB_PTA|Dairy_form|Rear_ud_height 0.89~1.00 2.7E-10~2.9E-22
LOC751788 Dairy_form|Final_score 0.92|0.96 4.2E-09|1.4E-11
SCD Fat|Fat_Percent 1.00|1.00 9.7E-13|4.6E-10
MKL1 Milk|Protein 1.00|1.00 2.0E-14|2.9E-10
SYT8 Final_score|Foot_angle 1.00|0.998 1.6E-10|1.4E-09
LOC782261 Milk|Net_Merit 0.92|0.61 6.5E-09|3.8E-10
CHEK2 Dtr_Calv_Ease|Sire_Calv_Ease 0.65|0.67 1.9E-12|3.8E-07
C8H9orf3 Final_score|Rump_width 1.00|0.63 1.2E-09|3.5E-09
GC Cow_Conc_Rate|Udder_depth 1.00|0.69 8.5E-08|1.8E-09
KALRN Cow_Conc_Rate|Dtr_Preg_Rate 0.54|0.92 1.4E-07|2.8E-08
CSN1S1 Pro_Percent|Protein 0.999|1.00 1.2E-14|8.7E-14
SCAPER Fore_udder_att|Front_teat_pla 0.999|0.77 5.3E-08|3.3E-08
TCP11 Stature|Udder_depth 1.00|0.97 5.9E-15|3.1E-08
PAEP Fat_Percent|Protein 0.996|0.84 2.0E-11|1.1E-07
ANKFN1 Rump_width|SCS 0.98|0.87 1.5E-09|3.8E-07
NADSYN1 Dtr_Preg_Rate|Stature 0.65|0.99 2.9E-08|3.3E-07
LOC100852273 Final_score|Fore_udder_att 0.995|0.97 3.2E-09|8.4E-09
RAB6A Milk|Pro_Percent 0.79|0.72 2.1E-13|3.5E-13
LOC107132925 Fore_udder_att|Udder_depth 0.75|0.999 1.6E-15|9.7E-18
POLD1 Foot_angle|Protein 0.98|0.99 3.8E-12|4.7E-13
RAB11FIP2 Front_teat_pla|Rear_teat_pla 0.83|0.64 2.5E-10|1.5E-07
MGMT Rump_angle 1 4.15E-11
BOSTAUV1R417 Sire_Still_Birth 1 1.64E-16
SLC50A1 Pro_Percent 1 2.48E-11
RNF217 Pro_Percent 1 2.29E-09
LOC104974054 Rump_angle 1 3.19E-15
HSD17B12 Fat_Percent 1 9.24E-10
LOC104975270 Fore_udder_att 1 3.69E-11
LOC104972568 Sire_Calv_Ease 1 4.13E-10
ADGRV1 Sire_Calv_Ease 1 4.93E-10
CD276 Dtr_Preg_Rate 1 3.86E-11
TTC28 Dtr_Calv_Ease 1 4.98E-10
LSP1 Udder_depth 1 2.95E-12
VEPH1 Udder_cleft 0.999 3.49E-07
TIGAR Prod_Life 0.999 9.64E-17
CCDC57 Fat 0.999 2.12E-09
GON4L Protein 0.998 1.45E-10
FASN Fat_Percent 0.998 7.47E-10
COLEC12 Rump_angle 0.997 1.05E-08
C6 SCS 0.997 3.95E-08
MYH10 Udder_depth 0.996 1.71E-09
GPAT4 Fat_Percent 0.995 3.93E-11
EXOC6B Teat_length 0.992 1.09E-09
ABO Pro_Percent 0.988 4.37E-11
LOC619012 Sire_Still_Birth 0.988 5.09E-09
MRGPRG Sire_Calv_Ease 0.987 3.63E-07
FSTL1 Stature 0.985 2.13E-08
SFTPD Pro_Percent 0.985 3.92E-10
SLC24A2 Rump_angle 0.973 5.17E-09
ESR1 Dtr_Calv_Ease 0.971 2.29E-11
LDLR SCS 0.965 2.85E-08
TBC1D22A Pro_Percent 0.947 3.73E-14
PTCH1 Body_depth 0.941 7.46E-09
LOC101903327 Prod_Life 0.936 9.30E-06
FAM98B Stature 0.93 5.08E-08
VWA2 Teat_length 0.929 7.82E-06
LOC786966 Pro_Percent 0.919 1.33E-08
MROH9 Rear_teat_pla 0.908 1.27E-08
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multiple signals, we found the models often contained a strong
signal and several much weaker ones. Those weak signals might
result from imperfect model fitting of the lead variants in other
signals, instead of being true positives. Nevertheless, filtering out
these weak signals with genome-wide significance levels did little
harm to the discovery of strong ones.

The enrichment results for SnpEff-inferred variant impact in
our study were very different from those reported in human
studies25. The differences among the four categories in the human
study are more distinctive than ours. This is consistent with our
anticipation that high LD in cattle genome makes such enrich-
ment difficult to detect. In addition, high-impact variants gen-
erally have a lower frequency than other variants and are thus
harder to impute in cattle where the number of reference
sequences is small and the original genotype data are of moderate
density. Nevertheless, we found a considerable enrichment of
candidate causal effects in moderate-impact variants. Incorpora-
tion of this enrichment into fine-mapping facilitated the dis-
covery of more candidate causal variants (Fig. 5). The discovery
of biologically meaningful enrichment patterns will be valuable
for the development of new methods to incorporate functional
information into fine-mapping and genomic prediction.

Different functional annotations are often related, so we ana-
lyzed the enrichment of each functional annotation separately.
Although single-annotation analysis does not resolve confound-
ing of multiple annotations, the enrichment estimates can still
provide informative priors for fine-mapping. We analyzed var-
ious functional annotations by single-annotation enrichment
analysis and determined the ones that provide highly differential
priors. LDSC may be able to dissect heritability enrichment
between multiple functional annotations, and BFMAP can
incorporate these outputs into fine-mapping simultaneously.

It is widely acknowledged that population structure and
relatedness need to be properly accounted for in GWAS via a
linear mixed model33 or a linear model with principal compo-
nents extracted from genomic relationship matrix34. Similarly, we
need to account for population structure and relatedness in fine-
mapping analyses as proposed in our BFMAP. However, existing
fine-mapping approaches have not fully addressed this issue. For
instance, BIMBAM models only intercept and SNPs of interest,
and thus only works for independent samples35. BayesFM can
include principal components as covariates, but it does not have a
random component to fully account for relatedness36. piMASS
applies Bayesian variable selection regression to modeling
genome-wide variants to control for population structure and
relatedness, but it uses a Markov chain Monte Carlo (MCMC)
algorithm that is computationally impractical for large studies37.
CAVIARBF, PAINTOR, and FINEMAP38, use summary test
statistics and are approximately equivalent to BIMBAM. In the-
ory, these methods work for independent samples by using
summary statistics from linear model analyses and genotype
correlations between variants. Further studies are warrant to
investigate how these summary-statistics methods perform for
structured or related samples when using summary statistics from
linear mixed models.

Using BFMAP, we pinpointed some promising candidate genes
for economically important traits in dairy cattle. It is promising to
validate those genes with high posterior probability of causality
(Table 2) in future functional studies. In addition, with our new
method of functional enrichment analysis in BFMAP, our fine-
mapping result of hundreds of QTLs (Supplemental Data 6) can
be readily used to estimate enrichments of causal effects for
additional functional annotation data. Thus, we provided an easy-
to-use enrichment analysis resource to test the functional

Table 3 Missense variants with largest posterior probabilities of causality (>0.2)

Variant Gene MAF Average PPC Traits

7:93244933 ARRDC3 0.099 0.608 Body_depth|Dtr_Calv_Ease|Net_Merit
|Prod_Life|Rear_ud_height|Sire_Calv_Ease
|Strength|Teat_length|Udder_depth

6:38027010 ABCG2 0.015 0.87 Fat|Fat_Percent|Milk|Net_Merit
|Pro_Percent|Protein

8:83581466 PTCH1 0.027 0.678 Body_depth|Strength
26:21144708 SCD 0.253 0.571 Fat|Fat_Percent
1:69673871 KALRN 0.105 0.462 Cow_Conc_Rate|Dtr_Preg_Rate
19:7521843 ANKFN1 0.217 0.446 Rump_width|SCS
29:50290087 SYT8 0.388 0.438 Final_score|Foot_angle
29:50286107 TNNI2 0.203 0.436 Rump_width|Stature
29:50289940 SYT8 0.387 0.399 Final_score|Foot_angle
17:70276788 CHEK2 0.088 0.388 Dtr_Calv_Ease|Sire_Calv_Ease
18:57017616 POLD1 0.103 0.291 Foot_angle|Protein
8:83044210 FANCC 0.116 0.252 Rear_teat_pla|Udder_depth
14:1321450 LOC782261 0.207 0.206 Milk|Net_Merit
14:2072259 LOC786966 0.090 0.919 Pro_Percent
18:44378414 CHST8 0.120 0.889 DFB_PTA
5:118244695 TBC1D22A 0.177 0.676 Pro_Percent
5:30259026 NCKAP5L 0.252 0.611 Teat_length
3:15464749 GBA 0.063 0.601 Milk
3:20189903 ADAMTSL4 0.075 0.571 Dairy_form
11:104232298 ABO 0.309 0.449 Pro_Percent
19:51319797 CCDC57 0.350 0.423 Fat
18:61020273 ZNF331 0.038 0.322 Dairy_form
19:51319759 CCDC57 0.350 0.304 Fat
8:85147150 LOC101906801 0.117 0.302 Strength
13:58716308 C13H20orf85 0.116 0.297 Fore_udder_att
11:104232319 ABO 0.309 0.223 Pro_Percent
14:66328304 SPAG1 0.119 0.222 SCS
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annotations that are being generated by the on-going FAANG
and related projects for cattle18.

Methods
Genotype and phenotype data. Genotype data have been described in more
details previously5. Here we provide a brief summary. SNP and insertion-deletion
(InDel) calls (sequence variants) from Run 5 of the 1000 Bull Genomes Project6

were released in July 2015. After stringent quality control edits and removal of
intergenic and intronic SNPs, 3,148,506 sequence variants were retained for 444
Holstein bulls. The sequence variants and high-density SNP genotypes of 312K
markers for 26,949 progeny-tested Holstein bulls (and 21 Holstein cows) were
combined by imputation using the FindHap software (version 3)39. Finally, we had
genotypes of 3,148,506 sequence variants for 27,214 Holstein bulls (179 bulls had
both sequence and high-density genotypes) and 21 cows. Imputation quality from
FindHap was assessed with 404 of the sequenced animals as the reference popu-
lation and 40 randomly selected animals for validation. The sequence genotypes of
the validation animals were reduced to high-density SNP genotypes and then
imputed back to sequence variants. The average imputation accuracy was 96.7% for
the 3,148,506 variants5. After excluding high-density SNPs, we found an average
accuracy of 96.4% for the newly imputed sequence variants. Chromosome-specific
imputation accuracy was >95% for all autosomes except Chromosome 12.

All of the 27,214 Holstein bulls used in this study had highly reliable (average
reliability >71% across traits) PTAs for 35 production, reproduction, and type traits
(Table 1). Transmitting ability is basically the additive genetic values of cattle.
Reliability quantifies the amount of information available in a PTA and measures
its accuracy40. Deregressed PTAs were used as phenotype in all our analyses, which
excludes parent information and reduces the dependence among animals41.
Because each of the bulls had many phenotyped daughters, their PTAs were
generally of high reliability, even for low-heritability traits (Table 1). The trait
definitions are shown in Table 1 and Supplementary Note 1. We categorized the 35
traits into three groups, i.e., production, reproduction, and body type, based on a
clustering analysis.

Single-trait GWAS. The software MMAP19 was used for all single-trait GWAS
analyses (https://mmap.github.io/). Basically, MMAP efficiently implements a
mixed-model approach for association tests that is similar to GEMMA42 but dif-
ferent from EMMAX;43 that is, variance component is estimated uniquely for each
marker. We used the following model

y ¼ μþ Xbþ g þ ewith g � N 0; σ2gG
� �

and e � N 0; σ2eR
� �

; ð1Þ

where y is deregressed PTAs, μ is global mean, X is genotype of a candidate variant
(coded as 0, 1 or 2) and b is its effect, g is a polygenic effect accounting for
population structure, and e is residual. The genomic relationship matrix (G)44 was
built using ~312K high-density SNP markers (filtered by MAF >1%). R is a
diagonal matrix (Rii= 1/r2−1), which is used to model differential reliability
among animals.

We disregarded variants on the X chromosome. We also filtered out variants
with an MAF of <1% or failing Hardy–Weinberg Equilibrium test (p < 1E−6).
After QC, there were ~2.7 million variants to be tested for association. We used a
genome-wide significance level of P < 5E−8. QTLs were located by finding GWAS
peaks where there were a cluster of significant variants. We used a custom Perl
script to find all GWAS peaks and further examined each of the peaks based on the
Manhattan plots to filter out suspicious ones (i.e., sporadic significant variants).
Subsequently, we determined a total of 286 QTLs (Supplemental Data 2) that were
further analyzed in fine-mapping studies.

To find which ones are novel among the 286 QTLs, we compared our result
with Cattle QTLdb (release 35 published on April 29, 2018) that contains 113,256
QTLs/associations from 848 publications20. To ensure correct physical positions of
QTLs on UMD 3.1, we first extracted the rs identifiers (rs#) of flanking SNPs for
each term from the Cattle QTLdb data, and then used the identifiers to find
flanking SNPs’ positions on UMD 3.1 in the Ensembl genome variation database.
These SNP positions were used as QTL positions. This procedure can rule out QTL
terms whose physical positions are inaccurately converted from genetic maps. The
Cattle QTLdb release 35 covers 599 different traits, in which we extracted those
with the (almost) same definition as the 35 traits in our study (Supplemental
Data 14). For each of the QTLs that we detected, we determined that it is either
previously reported if it is within ± 500 kb of any QTL/association for the same
trait(s) in the Cattle QTLdb or is newly discovered otherwise (Supplemental
Data 2).

Multi-trait association analysis. Following a previous study21, our multi-trait
association tests were based on a chi-square statistic with multiple degrees of
freedom. For each variant, the chi-square statistic for the multi-trait association test
was calculated by:

Multi� trait χ2df¼n ¼ t′iV
�1ti;

where ti is a n × 1 vector of the signed t-values of variant i for n traits, and V is an
n × n correlation matrix for the n traits which is calculated using signed t-values of

genome-wide variants. In our analysis, the signed t-values were obtained from
single-trait GWAS for 2,619,418 variants passing QC, and the correlations between
traits were calculated using all the variants. To test the robustness of the estimated
correlation using all sequence variants45, we also computed the correlation matrix
using two variant subsets obtained by selecting every 10th and every 100th variant.
The three variant sets produced similar correlation estimations (Supplementary
Fig. 7).

We performed hierarchical clustering based on the absolute correlation
coefficients, and then did multi-trait association analysis for each of the three
resulting clusters of traits as shown in Fig. 2. Specifically, we excluded net merit and
days to first breeding (DFB) in production and reproduction clusters, respectively,
because these traits are linear combinations of other traits and the number of bulls
for DFB was much smaller compared to other traits. We also excluded the four
calving traits to avoid sporadic significant variants. Additionally, all the traits
except for the six traits aforementioned were analyzed as a whole in a separate
multi-trait association test.

Bayesian Fine-MAPping (BFMAP). We developed the following Bayesian model
for fine-mapping:

y ¼ Xbþ Zaþ g þ e

b � N 0;φσ2e I
� �

a � N 0; γσ2e I
� �

g � N 0; ησ2e I
� �

e � N 0; σ2eR
� �

P σ2e
� � / 1=σ2e

ð2Þ

where y is a phenotype vector of size n for a complex trait, b is a vector of covariate
(other than genomic variants) effects and X is corresponding design matrix, a is a
vector of variant effects and Z is corresponding genotype coding matrix (e.g.,
genotype coding for additive, dominance, or imprinting effects46), g is a vector of
polygenic effect for controlling population structure, G is a corresponding variance
structure matrix (e.g., genomic relationship matrix), and e is the residual with
variance structure R for modeling reliability or accuracy of phenotypic records as in
model (1). The common variance component (σ2e ) is given by a non-informative
Jeffrey’s prior. Other variance parameters (φ,γ,and η) are treated as known. Gen-
erally, we can set φ to a large value (e.g., 1E8) to make a act like fixed effects. A
genomic variant is usually considered to have a small but noticeable effect, so we
can set γ at 0.01 or 0.0447,48. When Za only accounts for a tiny proportion of
phenotypic variance (this is true when modeling variants from a small genomic
region), we can set η based on the heritability (h2) by η= h2/(1−h2). In practice, we

can instead use heritability estimate ( bh2) in the null model without variants to
determine η.

We can easily compute P(D|M) (data D, and model M regarding variant
inclusion) by integrating out σ2e based on model (2). To allow easy calculation, we
use a linear transformation to the model (Supplemental Note 2). We can further
obtain the null distribution of Bayes factors (H0: a= 0) in model (2) by an
extension of the results by Zhou and Guan48 (Supplemental Note 3). Based on the
null distribution, scaled Bayes factor48 and corresponding p-value can be computed
for our model.

We seek to identify independent association signals within a QTL region and to
assign a posterior probability of causality (PPC) to each variant with fine-mapping.
Following the method by Huang et al10., our fine-mapping approach includes three
steps: forward selection49 to add independent signals in the model, repositioning
signals, and generating credible variant set for each signal. Although our approach
uses the same framework as Huang et al.10, there are a few notable differences
(Supplemental Data 15). While they only provided some R scripts for disease data,
we provide a fast, general-purpose software tool for fine-mapping analysis of
complex traits.

We set φ= γ= 1E8 in model (2) for fine-mapping, which enables easy
calculation of p-value for a newly added variant conditional on variants already in
model (Supplemental Note 4). We use a Bonferroni-corrected threshold49 as
stopping criterion in forward selection; that is, forward selection stops when
(2logBF+1) < 2logmeff, where meff is the effective number of independent variants
calculated using the method by Li and Ji50. Suppose that we select p independent
signals in forward selection and determine a set of lead variants (Sl) for the p signals
after repositioning. Then, for signal i with lead variant (li), we have a variant set (Si)
containing variants that have substantial LD with li but weak LD with lead variants
in other signals Sl /{ li }. Accordingly, we can compute PPC of variant j (vij) in Si
conditioning on Sl /{ li }:

P Mi ¼ vijjy;X;Z; Sln lif g
� �

¼
P y X;Z;Mi¼vij ;Sln lif gjð ÞP Mi¼vijð ÞP
j
P y X;Z;Mi¼vij ;Sln lif gjð ÞP Mi¼vijð Þ

ð3Þ

Where Mi= vij denotes that the causal variant in signal i is variant j in Si (i.e. vij).
Weöó can easily get a credible variant set passing a given confidence level (e.g.,
95%) for a signal, by sorting variants in a descending order of PPC and including
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them in the set from top to bottom. We can also calculate PPC of a gene by
summing up PPCs of all variants within the gene.

In the study by Huang, et al.10, an equal prior for each variant was used; that is,
P(Mi=vij)=1 ∀ vij∈ Si. Here, we propose a method to apply differential prior
probabilities by integrating functional annotation, following a previous study on
adjusting significance threshold based on functional annotation in GWAS25. With
our fine-mapping procedure, it is usually safe to assume one and only one causal
variant in each independent signal. For a functional annotation with several
categories, we denote the probability of a causal variant being in category C as pC
and the probability of a non-causal variant being of category C as qC. We can
accordingly obtain:

P Mi ¼ vij
� �

¼ P cij Mi ¼ vij

���� �Y
j′≠j

P cij′ Mi≠vij′

���� �
¼ pcij

Y
j′≠j

qcij ð4Þ
where cij denotes the category of variant j in Si (i.e. vij).

We estimate qC with the genome-wide frequencies of the categories25. To
estimate pC, we can use all available independent signals (Mi):

L pCf gjy;Zð Þ / Q
i
P Mi; y;Zj pC ; qCf gð Þ

/ Q
i

Q
j
P yjX;Z;Mi ¼ vij
� �

P Mi ¼ vijj pC ; qCf g
� � ð5Þ

When the signals identified in fine-mapping are independent of each other, we
can get:

P yjX;Z;Mi ¼ vij
� �

� P yjX;Z;Mi ¼ vij; Sln lif g
� �

ð6Þ
Taking Eqs. 4 and 6 into Eq. 5, we obtain a likelihood function regarding {pC}

and then get their maximum likelihood estimates (MLEs), p̂Cf g. By taking the
estimates of {pC, qC} and Eq. 4 to Eq. 3, we get updated PPCs with incorporation of
function annotation, which is actually an empirical Bayes approach.

When setting an equal prior for each variant, we find:

P Mi ¼ vijjy;X;Z; Sln lif g
� �

/ P yjX;Z;Mi ¼ vij; Sln lif g
� �

ð7Þ
Thus, to estimate {pC} by Eq. 5, we can use PPCs from the computation

assuming an equal prior for each variant. Accordingly, incorporation of functional
annotation includes three steps: computing PPCs given an equal prior for each
variant, estimating {qC} with the genome-wide frequencies of the categories and
estimating {pC} with these PPCs, and updating PPCs with {pC, qC}. These features
make our approach easier to use compared with PAINTOR13 and CAVIARBF12.

Fine-mapping of dairy cattle traits. Genomic regions for find-mapping were
determined by lead variants in single-trait and multi-trait GWAS results. We first
determined a minimal region that covered each lead variants (either in single- or
multi-trait QTLs), and then extended it 1 Mb upstream and downstream, resulting
in a ≥ 2Mb candidate region for fine-mapping. The 1-Mb extension allowed the
region to cover most variants that have an LD r2 of >0.3 with the lead variants26.

We obtained a total of 125 loci from single- and multi-trait GWAS results
(Supplemental Data 16). Three loci without enough high-density SNPs were
removed to ensure imputation quality, thus leaving 122 loci for fine-mapping. A
total of 57 loci were associated with more than one trait. Fine-mapping was
performed for individual traits, and these 122 loci represented 282 locus-by-trait
pairs for 32 traits (three leg traits were excluded for lack of significance). When
fine-mapping identified multiple signals in a candidate locus, we kept the strongest
one and filtered the rest. The effective number of independent tests was 54,403 for
the 282 locus-by-trait pairs (Supplemental Data 17). Considering that our effective
number estimates were already conservative51, we used 5E−7 (<0.05/54,403) as the
significance threshold. Subsequently, we found 434 association signals
(Supplemental Data 5).

We found that the locus-by-trait association pairs with more than three signals
identified were mostly from still birth and final score (Supplemental Data 5). We also
noticed slight inflation of GWAS results of these two traits (Supplementary Fig. 1).
Therefore, we removed the 16 QTLs with >3 fine-mapped signals from all following
analyses. We further removed 15 signals whose variant set had ≤ 10 variants of
distinct genotypes, as a small cluster of highly linked variants could indicate
inaccurate imputation. Additionally, if there were multiple QTL on a chromosome
for a trait, all lead variants in these loci were modeled jointly in fine-mapping.
Accordingly, 13 association signals whose lead variant had a p-value > 5E−7 were
removed. After all these edits, we determined a total of 308 association signals
(Supplemental Data 6).

Besides assuming an equal prior for each variant, we further applied differential
prior probabilities based on SnpEff-inferred impacts23. Since using Eq. 5 requires
independent association signals, we removed all the association signals for protein,
cow conception rate, rear teat placement, udder depth and strength, because they
have high correlation (r2 > 0.5) with other traits. We also removed another six
association signals, since these signals have a substantial LD with another signal
(measured by LD r2 between lead variants >0.25). These edits reduced the number
of association signals from 308 to 249. We estimated {pC, qC} for variant impact
categories based on the 249 association signals, and updated PPCs for all
308 signals by integrating the estimated functional enrichment. Effect impact-
incorporated PPCs were used for determining candidate variants or genes. When

computing PPC of a gene, all variants within its 2-kb upstream and downstream
ranges were included.

Enrichment analysis in BFMAP. Our enrichment analysis was based on our 249
fine-mapped association signals to estimate pC (the probability of a causal variant
being in category C) and qC (the probability of a non-causal variant being in category
C). The two probabilities can be estimated using the models described in BFMAP.
The enrichment for category C is defined as EC= pC/qC25, for which a value larger
than one indicates that candidate causal variants are more enriched in category C than
across the whole genome. Functional annotations investigated included locations of
variants regarding protein-coding genes, effect impact inferred by SnpEff23, and
constrained elements predicted by GERP24. Confidence intervals of the enrichment
estimates were derived by percentile bootstrap as in ref. 25. The association signals
were resampled 1,000 times to calculate the confidence intervals. We removed very
small categories (like HIGH in SnpEff-inferred effect impacts) in bootstrapping to
avoid non-convergence of the maximum likelihood estimation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics of all 36 dairy traits have been made publically available
through Figshare (https://figshare.com/s/ea726fa95a5bac158ac1). The reference sequence
data have been described and published previously by the 1000 bull genome project, and
the NCBI Sequence Read Archive accession codes are, SRP039339, SRR1293227,
SRR1262614–SRR1262659, SRR1188706, SRR1262533, SRR1262536, SRR1262538,
SRR1262539, SRR1262660–SRR1262788 and SRR1262789–SRR1262846. The original
genotype data are owned by third parties and maintained by the Council on Dairy Cattle
Breeding (CDCB). A request to CDCB is necessary for getting data access on research,
which may be sent to: João Dürr, CDCB Chief Executive Officer (joao.durr@cdcb.us). All
other relevant data are available in the manuscript, Supporting Information files, and
from the corresponding author upon request.

Code availability
BFMAP: https://jiang18.github.io/bfmap/
MMAP: https://mmap.github.io/
Cattle constrained elements: ftp://ftp.ensembl.org/pub/release-90/bed/ensembl-compara/
68_eutherian_mammals_gerp_constrained_elements/gerp_constrained_elements.
bos_taurus.bed.gz
Cattle genome annotation: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
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GCF_000003055.6_Bos_taurus_UMD_3.1.1_genomic.gff.gz
Cattle QTLdb: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
Cattle genome variation: ftp://ftp.ensembl.org/pub/release-89/variation/gvf/bos_taurus/
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