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Introduction

Genetic selection has been a very successful tool for the 
long-term improvement of livestock populations, and the rapid 
adoption of genomic selection over the last decade has doubled 
the rate at which some dairy cattle populations are improving 
(García-Ruiz et  al., 2016). While details differ somewhat be-
tween livestock species, the general objective of breeding 
programs is the same: the identification of genetically superior 
males and females that are used as the parents of the next gen-
eration. However, the expression of genetic potential also re-
quires that animals are placed in environments that support 
such performance. For example, Figure  1 shows the increase 

since 1970 in milk protein yield in U.S. Holstein cattle, parti-
tioned into gains due to increased genetic potential and those 
associated with improved environment (housing, feeding, etc.). 
Improved animal efficiency has also resulted in reduced envir-
onmental impacts throughout the production chain, which is 
of importance to consumers around the world (Capper and 
Cady, 2019).

Improved animal efficiency may be in conflict with improved 
health and resilience of animals because of trade-offs (Poppe 
et al., 2020). Resilience is the capacity of animals to be minim-
ally affected by environmental perturbations, such as diseases 
or heat waves, or to rapidly return back to the state it had be-
fore the perturbation (Berghof et al., 2019). One example is to 
have cattle that can adapt to climate change, for example, cows 
that are heat tolerant (Pryce at al., 2018). Big data offer oppor-
tunities to better breed dairy cattle with a balanced emphasis 
on efficiency and resilience. This work will review the current 
literature related to deep phenotyping of dairy cattle, identify 
opportunities and challenges associated with new technology 
for measuring animal performance, and discuss how promising 
tools may be applied in practice.

The Importance of Measurement

The phenotype, a measurement of some property or fea-
ture of an individual, is the basis of all genetic improvement 
programs, although its meaning is often assumed and defin-
itions are sometimes rare (e.g., Lush, 1994). While livestock 
breeders have long used complex selection indices that combine 
many traits into a single measurement of performance (Cole 
and VanRaden, 2017), there is a renewed interest in the col-
lection of high-dimensional data on individual animals driven 
by various genome-mapping initiatives (Houle et  al., 2010), 
environmental challenges (Grossi et al., 2019), and promising 
new technologies for low-cost phenotyping (e.g., Halachmi 
et al., 2019). A recent white paper focused on high-throughput 
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Implications

•	 Increasingly complex dairy cattle production systems 
require that all aspects of animal performance are 
measured across individuals’ lifetimes.

•	 Selection emphasis is shifting away from traits related 
to animal productivity toward those related to efficient 
resource utilization and improved health and welfare/
resilience.

•	 The goal of phenomics is to provide information for 
making decisions related to on-farm management, as 
well as genetic improvement. 
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phenotyping in livestock species (Koltes et  al., 2019), and 
the U.S. Department of Agriculture’s latest 10-yr blueprint 
for animal genomics research emphasizes the importance of 
closing the genome-to-phenome gap (Rexroad et  al., 2019). 
The ultimate goal of these efforts is to understand in detail how 
information encoded in the genome is translated into a pheno-
type to support the production of nutritious food from healthy 
animals.

It is important to recognize that the dairy industry has many 
constituents (dairy producers, dairy processors, breeding com-
panies, etc.), each of which has a different interest in measures 
of animal performance than do scientists. In the United States, 
42 traits of economic importance (5 yield traits; 8 measures of 
health, fertility, and longevity; 6 direct measures of health; 5 
calving traits; and 18 conformation traits) are currently evalu-
ated in the Holstein breed. Each of these traits is directly related 
to cow profitability, and selection indices are commonly used to 
combine information from many traits into a single quantity 
that can be used for animal ranking and selection (Figure 2).

Among researchers, there is interest in many other 
phenotypes, notably those related to milk composition and 
manufacturing properties, but there is currently little interest 
from dairy producers because there is no way for them to be 
paid directly for those traits. An exception is breeding for A2 
beta casein, which is gaining popularity and premium super-
market shelf-space in some countries. When the phenotypic 
recording of these measures does not directly lead to greater 

farm income, it is a challenge to incentive dairy producers to 
contribute data, although they are willing to look to the future 
(e.g., breeding for kappa casein). In addition, dairy processors 
feel that technological innovations are a more cost-effective 
solution than genetic improvement for manufacturing proper-
ties. This disconnect can give the impression that dairy produ-
cers are not willing to change the direction of their selection 
programs, but actually reflects a lack of market signals.

It is tempting to assume that genomic selection provides an 
answer to all of the problems of the past. However, while gen-
omics helps improve the rate of genetic gain (García-Ruiz et al., 
2016), the emphasis on genotypes has often detracted from the 
importance of phenotypes. Genomic selection can improve 
only what is measured. Figure 3 shows the often-discussed ex-
ample of decreased cow fertility associated with selection for 
increased milk production in U.S. Holsteins. When fertility was 
not included in the breeding goal, days open increased by ap-
proximately 1 d/yr and has only recently begun to show a favor-
able genetic trend.

Opportunities Associated With New 
Phenotyping Technologies

One of the key drivers of recent interest in animal phenotypes 
is the development of a new generation of electronic sensors 
that can be used to collect detailed, high-frequency measure-
ments about animal performance and their environments in 

Figure 1. Improvements in genetic potential and cow management have contributed to a sustained increase in productivity per animal, such as for protein yield 
of U.S. Holstein cows (Source: Council on Dairy Cattle Breeding).
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real time or near real time (e.g., Halachmi et al., 2019). Figure 4 
provides a summary of data that can be collected using some 
of these systems. 

The goal of these efforts should not necessarily be to replace 
existing phenotypes with new ones but to identify new sources 
of correlated information that can be collected on a large 
scale. For example, it would not be desirable to stop collecting 
somatic cell count (SCC) records that are correlated with udder 
health just because a new mastitis phenotype becomes avail-
able (Martin et al., 2018). There are several national databases 
that contain millions of observations for SCC that are used 
to compute high-reliability breeding values. New phenotypes, 
even those based on low-cost, easily collected observations, 
will require many years for sufficient data to accumulate to 
match the reliability that current evaluations based on SCC, 
longevity, and fertility data already have. There is likely more 
value in using new technologies to supplement data for existing 
phenotypes that are difficult or expensive to measure, such as 
computer vision-based measures of feed intake in place of 
weight-based intakes (Halachmi et al., 2019; Li et al., 2020).

On-Farm Analytics

Precision management is needed in order to provide the op-
timal environment for high-performing dairy cows, as well as 

to make timely management decisions (e.g., Kaniyamattam 
and De Vries, 2014). This includes a more frequent sampling of 
milk components (fat, protein, lactose, milk urea nitrogen, and 
somatic cell counts) and activity monitoring to identify changes 
in cow behavior associated with the onset of estrus, lameness, 
or disease and integration of real-time farm-level information 
(e.g., feed composition and weather). Alternative information 
about health comes from data recorded by automatic milking 
systems and electronic milking systems, such as milk yield per 
milking (Poppe et  al., 2020), udder and teat characteristics 
(Poppe et al., 2019), or other electronic devices, such as sensors 
or cameras (Song et al., 2019). A recent, multi-institutional ef-
fort to develop a “Virtual Dairy Farm Brain” has been organ-
ized by Liang et al. (2018) in order to combine expertise from 
scientists, dairy producers, and industry professionals for the 
purpose of improving whole-farm decision-making.

The prediction of  phenotypic performance using new data 
has not been studied in as much depth in the animal sci-
ences as in the plant sciences (Mir et al., 2019), perhaps, be-
cause it is easier to run a seedling through an instrument for 
deep phenotyping than it is a calf. However, there is growing 
interest in this topic and the literature is growing (e.g., 
Goddard et al., 2016; Ho et al., 2019). The most important 
question overall might be, “How do we provide real-time 
feedback to dairy producers so that they can take advantage 

Figure 2. Phenotypes included in 21 total merit indices used to rank dairy cattle for profitability of the United States and 16 other countries. Data were col-
lected from genetic evaluation centers and purebred cattle associations for Australia (ADHIS, 2014); Canada (CDN, 2017); Denmark, Finland and Sweden 
(NAV, 2017); France (Genes Diffusion, 2014); Germany (VIT, 2017); Great Britain (AHDB Dairy, 2017); Ireland (ICBF, 2017); Israel (SION, 2015); Italy 
(ANAFI, 2016); Japan (Holstein Cattle Association of Japan, 2010); New Zealand (DairyNZ, 2017); Spain (CONAFE, 2019); Switzerland (Holstein 
Association of Switzerland, 2013); The Netherlands (CRV, 2017); and the United States (Holstein Association USA Inc., 2017; VanRaden, 2017). Index ab-
breviations are HWI = health-weighted index; TWI = type-weighted index; BPI = balanced performance index; LPI = lifetime profit index; NTM = Nordic 
total merit; GDM = genes diffusion merit; RZG = Relativ Zuchtwert Gesamt (total merit index); £PLI = profitable lifetime index; EBI = economic breeding 
index; PD11 = Israeli 2011 breeding index; PFT = production, functionality and type index; NTP = Nippon total profit; BW = breeding worth; ICO = Índice 
de Mérito Genético Total (total genetic merit index); ISEL = Index de Sélection Totale (total selection index); NVI = Netherlands cattle improvement 
index; TPI = total performance index; GM$ = grazing merit; FM$ = fluid merit; CM$ = cheese merit; NM$ = net merit. (Source: after Figure 4 in Cole and 
VanRaden, 2017). 
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of  opportunities and avoid problems before they become 
acute?” This is driven in part by the biological variability 
among animals, exacerbated by genotype-by-environmental 
effects, and the high value of  an individual animal. A key op-
portunity will be to use data and new analytics to rigorously 
evaluate current management practices to identify assump-
tions that either no longer hold or, perhaps, never held at 
all. That is, when presented in a timely and comprehensible 
manner, data can supplement intuition and guide herd man-
agers to better decisions.

It is also critical that the dairy sector does not ignore 
growing demands from consumers for greater transparency 
about their food and how it is produced. For example, real-
time monitoring of animal health and welfare may have great 

value as a marketing tool as is the ability to trace food to farms 
of origin (this is already possible in some markets, e.g., the Red 
Tractor logo on UK products is designed to give consumers 
confidence in quality and traceability of products; https://www.
redtractor.org.uk/). Advanced analytics may also be necessary 
if  consumers, and the milk processors that are the intermediate 
between dairy producers and consumers, demand that repro-
ductive hormones are no longer used for routine manage-
ment. Negative consumer perceptions of recombinant bovine 
somatotropin (growth hormone) led milk processors in the 
United States to ban its use, emphasizing that scientific and 
technical arguments about the value of a particular technology 
may be ineffective in the face of public resistance. It is better to 
be proactive on this front than reactive.

Figure 3. Changes in genetic merit of Holstein bulls for the production (milk yield, broken green line) and fertility (daughter pregnancy rate, solid blue line) of 
their daughters from 1957 to 2017 (Source: Council on Dairy Cattle Breeding).

Figure 4. Phenotypes that can be collected at the cow level using sensor-based recording devices (Source: after Figure 5 of Halachmi et al., 2019).
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The Potential of the Milk Sample

Whole-animal measurements of performance are im-
portant because they provide detailed information about the 
physiological state of the animal but have the disadvantage 
that many different types of data must be integrated into de-
cision support systems. Fine measurements considered to be 
precise measurements of individual physiological indicators 
(e.g., β-hydroxybutyrate) also provide valuable information 
but require individual collection and processing of samples. 
Unfortunately, labor, equipment, and laboratory expenses 
often prevent wide-spread collection of data from national 
herds regardless of the exact technology or assay used. Ideally, 
new phenotyping technologies would build on existing systems 
for nationwide collection and analysis of phenotypes for mil-
lions of cows without substantial additional expenses for dairy 
producers.

Alternatively, there is great potential for the use of  test-day 
milk samples as the source of  correlated phenotypes for many 
traits related to milk composition and the cow’s physiological 
status. An absorbance spectrum can be generated by beaming 
infrared light through a milk sample (Figure 5), and the re-
sulting points may be used to develop predictors of  many 
different phenotypes (e.g., De Marchi et  al., 2014; Gengler 
et al., 2016). While there are differences between the instru-
ments sold by the three major vendors of  milk-testing equip-
ment, such as Bentley Instruments, Inc., FOSS, and Perten 
Instruments (formerly Delta Instruments), the same general 
approach may be used to develop equations for predicting, 
for example, lactoferrin, fatty acids, and coagulation proper-
ties from spectral data. In principle, it is similar to genomic 
prediction: phenotypes collected in a reference population 
are regressed on the wavelengths from the spectrum and the 
resulting weights used to estimate values in the larger popu-
lation. This supports wide-scale, low-cost phenotyping be-
cause individual mid-infrared spectroscopy (MIR) samples 
can be collected at normal processing speed in milk-testing 
laboratories without the need for manipulation of  the sample. 
The appeal with MIR is that it could become a cheap way 
of  getting individual cow records for expensive and hard-to-
measure phenotypes, such as methane production and meta-
bolic profiles. For example, in a study that included data from 

five countries, calibration and cross-validation coefficients of 
determination of  MIR predictions of  >0.65 and 0.57 were 
obtained for prediction of  methane emissions (Vanlierde 
et al., 2018).

Challenges Associated With New Phenotypes

While there is great potential associated with these new 
data, there also are many challenges that must be addressed 
by the scientific and farming communities. Many of the new 
technologies being offered to dairy producers are proprietary, 
and their methods may lack independent validation. This is a 
difficult challenge to overcome because of structural changes 
in agricultural experiment stations at land-grant universities 
that have limited the availability of both people and facilities 
needed to carry out validation studies, either in collaboration 
with industry or independently. Methods used for calculations 
are often incompletely documented or not documented at all 
because they are considered trade secrets. It is also common 
for data to be siloed or locked-away in proprietary software. 
Some vendors provide interfaces so that data can move into 
on-farm software systems, such as DairyComp 305 (VAS, 
Tulare, CA), others charge dairy producers for access to their 
data, and some provide no options for data mobility. Terms of 
access to data often are buried in software license agreements 
that do not clearly and explicitly disclose who owns data and 
how the data may be used. Finally, there is a serious lack of 
transparency in the dairy industry. Consolidation or vertical 
integration in which companies are acquired and small entities 
become a part of larger firms is becoming more common. For 
example, Company A may own Company B, with the license 
for Company A’s equipment requiring that data be deposited 
in Company B’s database. Company B then sells the data to 
third parties, and this relationship is not disclosed to the dairy 
producers purchasing Company A’s equipment.

The role of new data in animal recording and genetic im-
provement programs also is unclear. Bodies such as the 
International Committee for Data Recording (Rome, Italy), 
as well as national milk-recording programs, provide detailed 
guidelines for the collection of data that are used in animal im-
provement programs. This includes standardized definitions 
of phenotypes to ensure like-with-like comparisons of data. 

Figure 5. Creation of a mid-infrared spectral phenotype from a milk sample (Source: “MIR for Profit”; https://datagene.com.au/ct-menu-item-7/
projects-industry-initiatives/mir-for-profit).
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Laboratories must undergo inspection and certification, and 
data collection and transmission systems also must meet stand-
ards, such as those related to animal identification. Data owner-
ship remains unresolved, as discussed above, which raises issues 
when data undergo quality control. For example, the Council 
on Dairy Cattle Breeding (Bowie, MD) requires that changes to 
data—such as correction of a pedigree based on genotypes—be 
approved by an authorized party. If  it is not clear who owns the 
data, or who has authority to make decisions regarding those 
data, they cannot be easily integrated into genetic improvement 
or milk-recording programs.

However, the largest challenge of all remains that of how 
the dairy producer is to recover the costs of their investments 
in these new technologies. It is something of a chicken-and-
egg problem: until data are available to drive new payment 
schemes, such as payment for higher casein or whey content in 
milk, there is no way for dairy producers to get paid to collect 
those data. The lack of access to rural broadband internet is 
also a growing problem because of the need to transfer data 
to and from farms. There are related problems on the farm, 
too, because the free-stall barns commonly used in the United 
States are constructed with steel beams and other materials 
that can interfere with wireless data connections, requiring the 
use of WiFi repeaters and other infrastructure. This imposes 
additional costs on top of the cost of robots, cameras, and 
other systems. If  more technology is going to be installed on 
farms to meet the expectations of consumers and processors, 
there must also be a way for dairy producers to recover the cost 
of those new technologies. Even if  affordable, the new tech-
nology implemented on farm must be practical and, most im-
portantly, make work easier. The amount of data that is yielded 
by sensors and other on-farm precision management tools can 
be overwhelming and may require more labor from farm staff  
instead of less. This makes the integration of such technology 
unattractive and burdensome. 

Lastly, while it is a challenge to incentivize dairy produ-
cers to collect new phenotypes, it is an equally large challenge 
to maintain the collection of traditional phenotypes through 
milk-recording programs. The number of cows enrolled in the 
National Dairy Herd Information Association’s (Verona, WI) 
milk-recording programs has been declining (https://queries.
uscdcb.com/publish/dhi/part.html), which is concerning. New 
thinking on how milk recording is perceived and used could 
potentially alter its uptake. For example, if  MIR predictions of 
reproductive performance or early lactation disease risk are ac-
curate enough, then farmers may think about milk recording in 
a completely different way. Procedures for the inclusion of data 
from automated systems in genetic improvement programs also 
are needed to support unbiased evaluations. It is critical that 
the dairy producer realizes that genetic progress is dependent 
on the recording of both traditional and new phenotypes. This 
is difficult when those who do not contribute data benefit along 
with those who do support the system, but no good solution to 
this problem has been devised. In the United States, genotyping 
is cheaper for participants in milk-recording programs, so 
there is a benefit for those who do provide data. What is not 

measured cannot be changed. In turn, it is similarly important 
that milk-recording organizations continue to provide added 
value to their services when there is apparent, or actual, compe-
tition between milk-recording programs and organizations that 
sell genomic evaluation services. 

“So I Tied an Onion to My Belt, Which Was the 
Style at the Time.”

Substantial attention has been paid recently to the growing 
volumes of data available in virtually all areas and the need to 
turn those data into actionable information with limited direct 
human interaction. “Big data”, “machine learning”, and “arti-
ficial intelligence” are all promised by their advocates to be the 
solution to these challenges (e.g., Cole et al., 2012; Koltes et al., 
2019; Lokhorst et al., 2019). This is appealing given the rising 
tide of information to be interpreted, the high demand for sci-
entists with analytics skills, and the demand from dairy produ-
cers for better tools to manage their businesses. However, these 
new approaches have their own challenges, ranging from bias 
(Castelvecchi, 2016) to interpretability (Gilpin et al., 2018), and 
there is a temptation to oversell outcomes. Such unrealistic ex-
pectations do not help dairy producers, consumers, or allied 
industry. We, as a community, need to remain focused on pro-
ducing healthful food as efficiently as possible for a growing 
population. New analytics technologies will support that goal, 
but they are not infallible, and their recommendations should 
be tested in real-world situations.

Summary

In order to meet the growing worldwide demand for animal-
sourced protein, it is essential that the dairy industry make the 
most efficient use possible of  the cow’s ability to upcycle in-
edible plant matter (Mottet et al., 2017; Figure 6). This will 
require the efficient use of  all inputs needed on the farm, 

Figure 6. Holstein and Jersey crossbreeds graze on American Farm Land 
Trust's Cove Mountain Farm in south-central Pennsylvania (Source: ARS 
Image Gallery, image #K8587-14; photo by Bob Nichols).
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reduction of  undesirable outputs from animal agriculture, 
high-quality management of  cows and their environment, 
and assurances to consumers that dairy animals are healthy 
and well cared for. Innovative technologies based on low-cost 
sensors and cutting-edge data analysis tools will be necessary 
to meet those objectives. Close collaboration between dairy 
producers, scientists, and allied industry will be essential to 
convert these technologies into practical solutions.
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